Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ильин, конспект лекций.doc
Скачиваний:
27
Добавлен:
21.01.2022
Размер:
3.61 Mб
Скачать

8.5 Амплитудные детекторы в режиме детектирования сильных сигналов

При детектировании сигналов с амплитудой в детекторную характеристику можно представить в виде кусочно-линейной функции. В этом случае процесс детектирования можно пояснить с помощью эпюр напряжения, представленных на рис. 8.5.

Согласно рис. 8.5, выпрямленное напряжение на выходе детектора можно определить следующим образом:

.

(8.8)

С учетом этого коэффициент передачи детектора при детектировании сильных сигналов равен

.

(8.9)

Угол не зависит от U0 и, следовательно, эффекты детектирования по току и напряжению пропорциональны амплитуде входного напряжения. Уравнением детекторной характеристики является прямая с угловым коэффициентом, равным cos. Это дает основание называть детектор сильных сигналов линейным детектором. Однако, следует отметить, что по принципу действия "линейный детектор" сугубо нелинейное устройство с гораздо более выраженной нелинейностью, чем у квадратичного детектора.

Угол отсечки определяется по формуле:

,

(8.10)

где S – крутизна диодной характеристики, R – нагрузка детектора.

Если на детектор подается АМ–сигнал, а сам детектор линеен и безынерционен по отношению к огибающей, то

.

(8.11)

Рис. 8.5. Эпюры напряжений при детектировании сигналов сильной амплитуды

Отсюда

.

(8.12)

С учетом этого коэффициент передачи амплитудного детектора при детектировании АМ–колебания определяется выражением

.

(8.13)

Таким образом, идеальный безынерционный детектор не создает нелинейных искажений огибающей, так как его коэффициент передачи постоянен и равен cos. Величина коэффициента передачи детектора может быть очень близкой к единице при достаточно большом произведении SR. Это приводит к тому, что в современных приемниках применяют, как правило, режим детектирования сильных сигналов.

Входное сопротивление детектора в этом режиме определяется по формуле:

.

(8.14)

При короткозамкнутом детекторе (R=0, =/2) входное сопротивление в режиме короткого замыкания равно:

,

(8.15)

где Ri - внутренне сопротивление диода.

При большом сопротивлении нагрузки ( ) и входное сопротивление детектора определяется выражением:

.

(8.16)

Выше приведенные соотношения получены при условии неподвижности рабочей точки диода при подаче напряжения Uвх, т.е. .

В реальных условиях значение Сн ограничено, что приводит к снижению коэффициента передачи детектора и углублению пульсаций выходного напряжения.

При изменении Сн от бесконечности до 0 при достаточно большом произведении SR коэффициент передачи детектора изменяется от 1 до 0,3. При выборе величины емкости нагрузки детектора необходимо, чтобы выполнялось условие , т.е. емкость нагрузки должна быть намного больше проходной емкости диода.

8.6 Искажения сигнала при детектировании

При детектировании сильных сигналов возможны два вида искажений:

– частотные искажения, связанные с неправильным выбором постоянной времени цепи нагрузки детектора;

– нелинейные искажения, обусловленные переходным конденсатором на выходе амплитудного детектора.

Остановимся на частотных искажениях, связанных с неправильным выбором постоянной времени цепи нагрузки детектора.

На рис. 8.6 представлен эпюр детектирования амплитудно–модулированного сигнала. Из представленного эпюра видно, что основные искажения сигнала наблюдаются при разряде конденсатора нагрузки в тот момент, когда напряжение огибающей меньше, чем напряжение на конденсаторе нагрузки Uc.

Для уменьшения частотных искажений необходимо уменьшать постоянную времени цепи нагрузки детектора . Для АМ–сигналов с глубиной модуляции m и частотой модуляции  условие безынерционности цепи нагрузки детектора записывается следующим образом:

,

(8.17)

где  – частота модуляции.

Рис. 8.6. Эпюр детектирования амплитудно–модулированного сигнала

Для достижения большего коэффициента передачи необходимо выбирать сопротивление нагрузки R как можно больше. Однако величина R ограничена допустимым минимальным значением емкости нагрузки (величина емкости нагрузки должна быть намного больше величины проходной емкости диода).

Рассмотрим второй вид искажений. Этот тип искажений связан с введением разделительного конденсатора между детектором и первым каскадом усиления низкой частоты. Принципиальная схема детектора для этого случая приведена на рис. 8.7.

Рис. 8.7. Принципиальная схема детектора

Если выходное напряжение детектора подается на следующий каскад через разделительную емкость СР, то заряд этой емкости может привести к запиранию диода детектора и при этом прекращается процесс детектирования. Емкость разделительного конденсатора СР выбирается достаточно большой, чтобы снизить частотные искажения сигнала в области низких частот. Поэтому этот вид искажений не зависит от частоты модуляции (так как запирающее действие проявляется для всех модулирующих частот). Очевидно, что запирающее действие напряжение на разделительном конденсаторе будет проявляться, начиная с определенного значения коэффициента модуляции. Сигнал с искажениями такого рода представлен на рис. 8.8.

Рис. 8.8. Сигнал с искажениями

Связано это с тем, что сопротивление детектора по постоянному и переменному току различно. При этом полное сопротивление нагрузки для токов модулирующих частот равно , где RР – сопротивление цепи справа от разделительного конденсатора (входное сопротивление усилителя низкой частоты). В то же время сопротивление детектора для постоянного тока равно сопротивлению нагрузки . Следовательно, сопротивление нагрузки детектора для переменной и постоянной составляющих различны, при чем последняя больше, т.е. .

Амплитуда тока низкой частоты

.

(8.18)

Через резистор R проходит постоянная составляющая тока

.

(8.19)

Отсечка тока через диод наступает тогда, когда .

Исходя из этого, предельное значение коэффициента модуляции, при котором наблюдаются искажения сигнала можно определить следующим образом:

(8.20)

или

.

(8.21)

Поскольку обычно m = 0,8  0,9 то выполнение приведенных выше соотношений может оказаться затруднительным, особенно при использовании транзисторных усилителей с малым входным сопротивлением.

Следовательно, для того чтобы уменьшить искажения этого типа необходимо на выходе детектора ставить усилительные каскады с большим входным сопротивлением (например, на полевых транзисторах или лампах, либо в качестве первого каскада применять эмиттерный повторитель с большим входным сопротивлением).

Для уменьшения указанных искажений в усилителях на биполярных транзисторах, кроме того, можно использовать высокоомный делитель напряжения после разделительного конденсатора, выходной сигнал с которого снимается с низкоомного плеча. В этом случае можно пренебречь влиянием низкого входного сопротивления усилительного каскада на биполярных транзисторах. Однако более предпочтительным является применение детекторов с разделенной нагрузкой (рис. 8.9).

Рис. 8.9. Принципиальная схема детектора

В этом случае нагрузка по постоянному току состоит из двух сопротивлений Rн1 и Rн2. Продетектированный сигнал на вход УНЧ снимается с сопротивления Rн2. При этом разделительный конденсатор заряжается до значительно меньших напряжений и влияние его запирающего действия резко уменьшается. Однако деление нагрузки АД приводит к уменьшению коэффициента передачи детектора, так как продетектированное напряжение, подаваемое на следующий каскад, снимается не со всего резистора нагрузки. Конденсатор нагрузки состоит из двух конденсаторов Сн1 и Сн2. и с учетом их включения обеспечивает лучшую фильтрацию для промежуточной частоты.