Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ильин, конспект лекций.doc
Скачиваний:
27
Добавлен:
21.01.2022
Размер:
3.61 Mб
Скачать

11.2 Помехозащищенность при флуктуационной помехе

Предположим, что помеха представляет собой белый шум с нормальным распределением амплитуд и постоянной спектральной плотностью B в полосе приема ЧМ-сигналов.

Элементарную помеху в бесконечно малом интервале частот df можно рассматривать как синусоидальную. Такая помеха вызывает паразитную частотную модуляцию (как это было показано выше), для которой квадрат девиации частоты равен

.

(11.13)

Квадрат эффективного напряжения помехи на выходе частотного детектора равен (переход от амплитудного значения к эффективному, обуславливает коэффициент равный 2 в знаменателе):

.

(11.14)

Интегрируя полученное выражение в полосе от –Fmax до Fmax, получим:

.

(11.15)

Эффективное напряжение шума на выходе частотного детектора можно представить следующим образом:

.

(11.16)

Эффективное напряжение сигнала на выходе частотного детектора:

,

отношение сигнал/помеха на входе

,

.

(11.17)

Таким образом, при применении широкополосной частотной модуляции выигрыш в отношении сигнал/шум пропорционален индексу модуляции.

Получить аналитические формулы для оценки выигрыш в отношении сигнал/шум при изменении отношения сигнал/шум в широких пределах практически невозможно. Поэтому для малых отношений сигнал/шум мы приведем основные зависимости на основании экспериментальных данных.

При применении ЧМ-сигналов наблюдается пороговый эффект, который состоит в том, что при малых отношениях сигнал/шум частотная модуляция хуже амплитудной модуляции (это связано с тем, что в этом случае за счет ограничителя амплитуды не удается эффективно подавить паразитную амплитудную модуляцию за счет действия помехи). При достижении некоторого порогового значения отношения сигнал/шум при приеме ЧМ-сигналов наблюдается выигрыш по сравнению с приемом АМ-колебаний. Чем больше индекс частотной модуляции, тем больше величина выигрыша по отношению сигнал/шум по сравнению с АМ-модуляцией и тем больше требуемое отношение сигнал/шум , при котором обеспечивается этот выигрыш.

11.3 Радиоприем одной боковой полосы частот

При радиопередаче с помощью обычного АМ-сигнала излучение состоит из трех видов колебаний: несущей и двух боковых. Распределение мощности при этом следующее:

- при телеграфном сигнале. Если принять излучаемую мощность при передаче точке Рт за 100%, то мощность колебания несущей частоты Рн будет составлять 25% от этой мощности, т.е.:

(11.17)

Мощности верхней и нижней боковых полос Рвб и Рнб, всегда равны между собой и определяются, для случая максимального уровня, следующим выражением:

(11.18)

При передаче АМ-сигналов сообщение заключается в боковых полосах. Колебание несущей частоты никаких сведений о передаваемом сообщении не несет, и, следовательно, с этой точки зрения бесполезно. Назначение несущей - участвовать в процессе детектирования высокочастотного АМ-сигнала. При наличии несущей схема приемника получается значительно проще, чем в случае приема колебаний без несущей, т.е. колебаний в виде двух боковых полос или одной боковой полосы. Таким образом, наличие несущей при передаче сигналов удешевляет приемник, что вполне является оправданным для радиовещания, где каждую передающую станцию принимают сотни приемников индивидуального или коллективного пользования.

В радиосвязи, когда сигналы передатчика принимает всего лишь один приемник, стоимость приемника не может играть решающей роли и в этом случае отказ от излучения несущей оказывается целесообразным. Способ передачи без несущего колебания называется способом передачи с подавленной несущей или передачей на двух боковых.

Боковые полосы несут одну и ту же информацию, поэтому для передачи информации достаточно использовать лишь одну из боковых полос исходного АМ-сигнала. Переход к передачи информации на одной боковой позволяет уменьшить требуемую полосу пропускания канала в 2 раза, что является главным достоинством этого способа передачи. Следует при этом отметить, что при замираниях избирательного характера система с одной боковой имеет значительные преимущества перед обычной модуляцией. При наличие избирательных замираний может иметь место ослабление уровня несущей относительно уровня боковых. Это приводит к относительному углублению модуляции, а если в приемнике имеется система АРУ, то в этом случае наблюдается изменении уровня сигнала, но такие искажения сигнала не столь существенны.

При сильном ослаблении несущей наблюдается перемодуляция сигнала, что приводит к значительным искажениям сигнала. При приеме одной боковой колебание несущей частоты вырабатывается не в передатчике, а в приемнике, благодаря чему таких искажений при приеме сигналов быть не может.

Следовательно, однополосная передача при одинаковой установочной мощности лампы передатчика дает выигрыш по сравнению с амплитудной модуляцией от 8 до 16 раз по мощности. Кроме того, при однополосной модуляции отсутствуют большие нелинейные искажения, обусловленные избирательными замираниями несущей при обычной амплитудной модуляции.

Одним из преимуществ однополосной модуляции является скрытность передачи. Это обусловлено тем, что при приеме однополосного сигнала необходимо восстанавливать несущую на приемном конце. Требуемая точность восстановления несущей при передаче на двух боковых весьма высока. При приеме двух боковых с подавленной несущей необходимо точно восстанавливать не только частоту, но и фазу несущего колебания.

При передаче на одной боковой несущее колебание восстанавливается для радиовещания с точностью 1-2 Гц, а для телефонии 5-10 Гц.

В настоящее время применяются следующие методы восстановления несущей при приеме одной боковой полосы:

1. Использование стабильных генераторов;

2. Точная автоматическая подстройка частоты по не полностью подавленной несущей или по так называемому пилот-сигналу.

Использование стабильных генераторов возможно лишь при работе на длинных и средних волнах, т.к. при стабильности 10-6 отклонение частоты на длине волны 1000 м составляет 10 Гц.

На коротких волнах восстановление несущей возможно лишь вторым способом. Для этого используется опорный сигнал, представляющий собой

– остаток несущего колебания (обычно 10-20% от максимального уровня несущего колебания),

– специальный управляющий сигнал (пилот-сигнал), расположенный обычно со стороны нижней границы низкочастотного спектра.

В случае пилот-сигнала его расстройка относительно несущей частоты должна быть строго постоянной.

Введение в передатчике опорного сигнала для автоматической подстройки понижает эффективность системы связи на одной боковой, т.к. при этом мощность боковой полосы должна быть снижена.

В однополосном приемнике, как и в приемнике АМ-сигналов обязательно применение автоматической регулировки усиления. Особенностью системы АРУ однополосного приемника состоит в том, что она должна работать лишь по несущему колебанию (или пилот-сигналу), а не по всему сигналу, так как в этом случае уровень боковой зависит не только от условий распространения сигнала, но и от уровня модуляции, а уровень несущего соизмерим с уровнем боковой.

Рис. 11.2 Структурная схема приемника с одной боковой полосой

Для детектирования однополосных сигналов на амплитудный детектор подается однополосный сигнал с выхода УПЧ и опорный сигнал с выхода генератора несущей. Сигнал с выхода УПЧ подается на вход узкополосного фильтра, который выделяет на выходе либо подавленную несущую или пилот сигнал. Этот сигнал подается в систему автоматической подстройки частоты и систему АРУ. В системе АПЧ на частотный детектор подается сигнал с выхода узкополосного фильтра и сигнал от генератора несущей. В результате сравнения этих сигналов на выходе частотного детектора вырабатывается сигнал управления, который в дальнейшем подается на управитель частоты гетеродина.

Система АРУ включает детектор АРУ и фильтр. Сигналы с фильтра подаются в УРЧ и первые каскады УПЧ.