Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_fiziologii_2020.docx
Скачиваний:
130
Добавлен:
08.01.2022
Размер:
4.03 Mб
Скачать

Рассмотрите важнейшие физиологические свойства рецепторов. Дайте классификацию рецепторов

Функциональное назначение рецепторов заключается в выявлении и различении раздражителей с разной модальности. Поскольку раздражители внешней или внутренней среды имеют различную природу, а нервные центры «понимают только один язык», т.е. нервный импульс (ПД), то к вышеперечисленным функциям рецептора предстоит еще и преобразования разной модальности раздражения в ПД.

Классификация:

I.По характеру действия раздражителя:

  1. Экстерорецепторы (рецепторы органов чувств).Как правило, высокоспецифичны к определенному раздражителю – мономодальные (закон специфической нервной энергии Мюллера).

  2. Интерорецепторы (рецепторы внутренних органов). Могут быть мономодальные (например, хеморецепторы в стенке аорты чувствительны к СО2, рН, О2). Но большинство интерорецепторов полимодальные, т.е. могут реагировать на широкий диапазон раздражителей.

  3. Проприорецепторы (рецепторы мышц, связок, суставов), полимодальные.

II. По модальности:

  1. Механорецепторы – располагаются в периферических отделах соматической (скелетно-мышечной), слуховой и вестибулярной систем.

  2. Терморецепторы – располагаются в коже, внутренних органах и центральных термочувствительных нейронах, делятся на тепловые и холодовые.

  3. Хеморецепторы. У наземных животных находятся в периферических отделах обонятельной и вкусовой сенсорных систем, а также в сосудах и тканях (информация о химическом составе внутренней среды).

  4. Фоторецепторы – в глазу.

  5. Электрорецепторы – в боковой линии рыб, у некоторых амфибий и т.д.

  6. Болевые (ноцицептивные) рецепторы – во всех органах.

III. По механизмам образования нервного импульса:

  1. Первично-чувствующие рецепторы:раздражитель действует на дендрит сенсорного нейрона, изменяется проницаемость клеточной мембраны к ионам (в основном к Na+), образуется локальный электрический потенциал (рецепторный потенциал), который электротонически распространяется вдоль мембраны к аксону (таблица 1). На мембране аксона образуется потенциал действия, передаваемый далее в ЦНС.

Сенсорный нейрон с первично-чувствующим рецептором представляет собой биполярный нейрон, на одном полюсе которого располагается дендрит с ресничкой, а на другом – аксон, передающий возбуждение в ЦНС.

Примеры: проприорецепторы, терморецепторы, обонятельные клетки.

  1. Вторично-чувствующие рецепторы: в них раздражитель действует на рецепторную клетку, в ней возникает возбуждение (рецепторный потенциал). На мембране аксона рецепторный потенциал активирует выделение нейромедиатора в синапс, в результате чего на постсинаптической мембране второго нейрона (чаще всего биполярного) образуется генераторный потенциал, который и приводит к образованию потенциала действия на соседних участках постсинаптической мембраны (таблица 1). Далее этот потенциал действия передается в ЦНС. Примеры: волосковые клетки уха, вкусовые

IV.По дальности расположения воспринимаемого стимула рецепторы являются

  1. дистантными (слух, зрение),

  2. контактными (осязание, обоняние, вкус).

  3. интероцепторами — это рецепторы, воспринимающие раздражители из внутренней среды организма, (рецепторы сосудов, внутренних органов, а также рецепторы двигательного аппарата, называемые проприоцепторами). Свойства рецепторов.

  1. Высокая возбудимость. Так, для возбуждения фоторецептора сетчатки достаточно одного кванта света, для обонятельного рецептора - одной молекулы пахучего вещества.

  2. Адаптация - уменьшение возбудимости рецепторов при длительном действии раздражителя (только темновая адаптация фоторецепторов приводит к повышению их возбудимости). Адаптация рецепторов выражается в снижении амплитуды РП и, как следствие, в уменьшении частоты импульсации в афферентном волокне.

  3. Спонтанная активность, т.е. способность возбуждаться без действия раздражителя, присуща проприорецепторам, фоно-, фото-, вестибуло-, термо-, хеморецепторам. Эта способность связана со спонтанным колебанием проницаемости клеточной мембраны, перемещением ионов и периодической деполяризацией рецептора, которая, достигая критического уровня, приводит к генерации потенциала действия в афферентном нейроне.

При возбудимости рецепторов, обладающих более высокой фоновой активностью, даже слабый раздражитель способен значительно повысить частоту импульсации в них. Фоновая активность рецепторов участвует в поддержании тонуса ЦНС

Проанализируйте функции вспомогательного аппарата, оптической системы и рецепторного аппарата зрительного анализатора. Уметь определять остроту зрения по таблице и интерпретировать полученные результаты.

Орган зрения — один из главных органов чувств, он играет значительную роль в процессе восприятия окружающей среды. В многообразной деятельности человека, в исполнении многих самых тонких работ органу зрения принадлежит первостепенное значение. Достигнув совершенства у человека, орган зрения улавливает световой поток, направляет его на специальные светочувствительные клетки, воспринимает черно-белое и цветное изображение, видит предмет в объеме и на различном расстоянии. Орган зрения расположен в глазнице и состоит из глаза и вспомогательного аппарата (рис. 144).

Рис. 144. Строение глаза (схема):

1 — склера; 2 — сосудистая оболочка; 3 — сетчатка; 4 — центральная ямка; 5 — слепое пятно; 6 — зрительный нерв; 7— конъюнктива; 8— цилиар-ная связка; 9—роговица; 10—зрачок; 11, 18— оптическая ось; 12 — передняя камера; 13 — хрусталик; 14 — радужка; 15 — задняя камера; 16 — ресничная мышца; 17— стекловидное тело

С ветопреломляющие структуры глаза: роговица, радужная оболочка, хрусталик, камерная влага и стекловидное тело - обеспечивают формирование на сетчатке реального, уменьшенного и перевернутого изображения объекта внешнего мира. Радужная оболочка образует зрачок. Светопреломляющая способность хрусталика и диаметр зрачка изменяются при сокращении гладких мышц глаза. Зрачковая реакция на свет является механизмом снижения количества света, падающего на сетчатку при сильном освещении (сужение зрачка), или повышения количества света при слабом освещении за счет увеличения ширины зрачка. Физиологические механизмы опознания зрительных объектов начинаются с первичной обработки зрительной информации в сетчатке глаза, которая является периферической рецепторной структурой зрительного анализатора. Сетчатка расположена на внутренней поверхности задней сферы глазного яблока и состоит из клеток пигментного эпителия, фоторецепторов и четырех слоев, образованных различными нервными клетками.

Фоторецепторы сетчатки: основными зрительными рецепторами, расположенными в сетчатке, являются палочки и колбочки. У человека рецепторный слой сетчатки состоит из 120 млн палочек и 6 млн колбочек. Колбочки воспринимают цвета и функционируют в условиях яркой освещенности объектов, в то время как палочки воспринимают световые потоки в условиях сумерек.

Фоторецепторы сетчатки содержат светочувствительные пигменты, которые обесцвечиваются при действии света. В палочках содержится пигмент родопсин, в колбочках — йодопсин. Процесс преобразования энергии в фоторецепторе начинается с поглощения фотона молекулой пигмента. Конформационное изменение молекул пигмента активирует ионы Са2+, которые посредством диффузии достигают натриевых каналов, вследствие чего проводимость для Na+ снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству.

Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками.

Охарактеризуйте строение периферического, проводникового и коркового отделов зрительного анализатора, физиологический механизм и значение бинокулярного зрения. Уметь определять поле зрения с помощью периметра Форстера.

Зрительные пути: Аксоны ганглиозных клеток дают начало зрительному нерву. Правый и левый зрительные нервы сливаются у основания черепа, образуя перекрест, где нервные волокна, идущие от внутренних половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных половин каждой сетчатки объединяются вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт заканчивается в первичных центрах зрительного анализатора, к которым относятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга.

Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуждения на пути между сетчаткой и корой большого мозга. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю освещенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза.

Верхние бугорки четверохолмия. Нервные клетки реагируют на движущиеся световые стимулы, включены в механизмы управления целенаправленным движением глаз.

Бинокулярное зрение - механизм регуляции одновременного движения правого и левого глазных яблок, который управляются нейронами, находящимися как в подкорковых структурах, так и в коре большого мозга. Центры бинокулярного зрения находятся в области ретикулярной формации среднего мозга, в верхних бугорках четверохолмия. Ретикулярная формация среднего мозга является интегрирующим центром, получающим информацию по афферентным путям не только от верхних бугорков четверохолмия, но и от фоторецепторов сетчатки. Ядра глазодвигательных нервов находятся также под влиянием мозжечка. В мозжечке вестибулярные и зрительные сигналы интегрируются с сигналами, отражающими положение головы и глаз.

Физиологическое значение. Бинокулярное зрение обеспечивает восприятие предметов и рельефа, а также оценку расстояния до них.

Периметр Форстера состоит из металлической дуги, разделенной на градусы. Дуга, укрепленная на подставке, может вращаться вокруг своей оси и находиться в различных плоскостях. Против середины дуги располагают подбородок. По внутренней стороне дуги скользит белая или цветная метка. На оси дуги находится белый фиксированный кружок.

Проведение работы. Испытуемый садится спиной к свету, периметр должен быть равномерно освещен. Подбородок помещают на специальную подставку таким образом, чтобы исследуемый глаз находился на уровне нижнего края визирной пластинки, при этом другой глаз должен быть закрыт. Дуга периметра устанавливается в горизонтальном положении. Испытуемый фиксирует взгляд точно на белый кружок в центре дуги. Экспериментатор медленно передвигает палочку с белой меткой от периферии к центру, а испытуемый сообщает о моменте появления белой метки в поле его зрения. Отмечают соответствующее положение метки на дуге и точкой на стандартном бланке. Затем определяют поле зрения с другой стороны дуги и также отмечают на стандартном бланке. Эти точки отражают наружную и внутреннюю границы поля зрения. Для определения верхней и нижней границы поля зрения дугу периметра переводят в вертикальное положение.

Аналогичным образом измеряют границы поля зрения, каждый раз поворачивая дугу периметра на 15°. Белую метку заменяют цветной и таким же образом определяют поле зрения для различных цветов. При этом испытуемый должен точно определить цвет метки. Поле зрения неодинаково в различных меридианах. Книзу и кнаружи оно больше, чем кнутри и кверху. Самое большое поле зрения для белого цвета, для синего и желтого оно больше, чем для красного и зеленого.

Цветное зрение: восприятие глазом того или иного тона зависит от длины волны излучения: длинноволновые

– красный и оранжевый; средневолновые – желтый и зеленый; коротковолновые – голубой, синий, фиолетовый. За пределами хроматической части спектра располагается невидимое невооруженным глазом ультрафиолетовое излучение. В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазией.

Соседние файлы в предмете Нормальная физиология