Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_fiziologii_2020.docx
Скачиваний:
139
Добавлен:
08.01.2022
Размер:
4.03 Mб
Скачать

Объясните механизм газообмена между альвеолярным воздухом и кровью капилляров малого круга кровообращения при нормальном и пониженном атмосферном давлении

Важнейшая функция легких — обеспечение газообмена между воздухом легочных альвеол и кровью капилляров малого круга. Для понимания механизмов газообмена необходимо знать газовый состав обменивающихся между собой сред, свойства альвеолокапиллярных структур, через которые идет газообмен, и учитывать особенности легочного кровотока и вентиляции.

Состав альвеолярного и выдыхаемого воздуха

Состав атмосферного, альвеолярного (содержащегося в легочных альвеолах) и выдыхаемого воздуха представлен в табл. 1.

Таблица 1. Содержание основных газов в атмосферном, альвеолярном и выдыхаемом воздухе

Состав воздуха, %

О2

СО2,

N2

Н20. пары

Атмосферный

20,93

0,03

78,5

0,5

Альвеолярный

14-15

5-6,5

74,5

5,6

Выдыхаемый

16-17

4-5

74,7

5,5

На основе определения процентного содержания газов в альвеолярном воздухе рассчитывают их парциальное давление. При расчетах давление водяного пара в альвеолярном газе принимают равным 47 мм рт. ст. Например, если содержание кислорода в альвеолярном газе равно 14,4%, а атмосферное давление 740 мм рт. ст., то парциальное давление кислорода (р02) составит: р02 = [(740-47)/100] • 14,4 = 99,8 мм рт. ст. В условиях покоя парциальное давление кислорода в альвеолярном газе колеблется около 100 мм рт. ст., а парциальное давление углекислого газа около 40 мм рт. ст.

Несмотря на чередование вдоха и выдоха при спокойном дыхании состав альвеолярного газа изменяется лишь на 0,2- 0,4%, поддерживается относительное постоянство состава альвеолярного воздуха и газообмен между ним и кровью идет непрерывно. Постоянство состава альвеолярного воздуха поддерживается благодаря малой величине коэффициента вентиляции легких (КВЛ). Этот коэффициент показывает, какая часть функциональной остаточной емкости обменивается на атмосферный воздух за 1 дыхательный цикл. В норме КВЛ равен 0,13-0,17 (т.е. при спокойном вдохе обменивается приблизительно 1/7 часть ФОЕ). Состав альвеолярного газа по содержанию кислорода и углекислого газа на 5-6% отличается от атмосферного. Таблица. 2. Газовый состав вдыхаемого и альвеолярного воздуха

Диффузия газов между альвеолами и кровью

Диффузия газов между альвеолярным воздухом и кровью подчиняется общему закону диффузии, согласно которому се движущей силой является разность парциальных давлений (напряжений) газа между альвеолами и кровью (рис. 3).

Газы, находящиеся в растворенном состоянии в плазме крови, притекающей к легким, создают их напряжение в крови, которое выражают в тех же единицах (мм рт. ст.), чтои парциальное давление в воздухе. Средняя величина напряжения кислорода (рО2) в крови капилляров малого круга равна 40 мм рт. ст., а его парциальное давление в альвеолярном воздухе — 100 мм рт. ст. Градиент давления кислорода между альвеолярным воздухом и кровью составляет 60 мм рт. ст. Напряжение углекислого газа в притекающей венозной крови — 46 мм рт. ст., в альвеолах — 40 мм рт. ст. и градиент давления углекислого газа составляет 6 мм рт. ст. Эти градиенты и являются движущей силой газообмена между альвеолярным воздухом и кровью. Следует учитывать, что указанные величины градиентов имеются лишь в начале капилляров, но мере продвижения крови по капилляру разность между парциальным давлением в альвеолярном газе и напряжением в крови уменьшается.

Рис. 3. Физико-химические и морфологические условия газообмена между альвеолярным воздухом и кровью На скорость обмена кислорода между альвеолярным воздухом и кровью влияют как свойства среды, через которую идет диффузия, так и время (около 0,2 с), в течение которого происходит связывание перешедшей порции кислорода с гемоглобином.

Для перехода из альвеолярного воздуха в эритроцит и связи с гемоглобином молекула кислорода должна продиффундировать через:

  • слой сурфактанта, выстилающий альвеолу;

  • альвеолярный эпителий;

  • базальные мембраны и интерстициальное пространство между эпителием и эндотелием;  эндотелий капилляра;

  • слой плазмы крови между эндотелием и эритроцитом;

  • мембрану эртроцита;

  • слой цитоплазмы в эритроците.

Суммарное расстояние этого диффузионного пространства составляет от 0,5 до 2 мкм.

Рис. 4. Газообмен в капиллярах большого и малого круга кровообращения

В условиях высокогорья

У горцев:↑ содержание СО2 и ↓ содежание О2 в крови на фоне снижения чувствительности периферических хеморецепторов к гипоксии , увеличение плотности капилляров и относительно высокого уровня утилизации тканями О2 из крови, возрастают диффузионная способность легких и кислородная емкость крови за счет роста концентрации Hb

Соседние файлы в предмете Нормальная физиология