Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оптика 3 семак / Грязнова / Колоквиум-Экзамен.docx
Скачиваний:
46
Добавлен:
15.09.2021
Размер:
23.4 Mб
Скачать

15. Электроемкость. Конденсаторы

В системе СИ единица электроемкости называется фарад (Ф)

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками . Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением

Согласно принципу суперпозиции, напряженность

поля, создаваемого обеими

пластинами, равна сумме напряженностей

и

полей каждой из пластин:

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует

16. Энергия заряженного проводника; конденсатора

Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии, приобретаемой конденсатором.

В том, что заряженный конденсатор, как и любая другая система заряженных тел, обладает энергией, можно убедиться, если к пластинам заряженного конденсатора большой емкости подключить лампочку карманного фонарика. На короткое время она вспыхнет.

Любой заряженный проводник, подобно заряженному конденсатору, обладает энергией*.

* Конечно, энергией обладает и заряженный диэлектрик, но вычислить его энергию сложно. Для проводника это сделать нетрудно, так как все его точки имеют одинаковый потенциал.

Будем заряжать проводник, перемещая к нему из бесконечности электрический заряд малыми порциями Δq. Все дальнейшие рассуждения подобны использованным выше для вычисления энергии конденсатора.

При перемещении заряда Δq электрическое поле проводника совершает работу

ΔА = Δq(φ∞ - φ), (1.27.7)

где φ — потенциал проводника, имеющего заряд q. Потенциал на бесконечности считаем равным нулю (φ∞ = 0). Тогда

где С — емкость проводника. В результате энергия заряженного проводника

здесь φ — потенциал проводника (вместо напряжения U), а С — емкость уединенного тела, а не конденсатора.