
- •I тема.
- •1. Закон сохранения электрического заряда
- •2. Закон Кулона
- •3. Электрическое поле. Напряженность
- •4. Поток вектора е. Теорема Гаусса
- •Теорема Гаусса
- •Применение теоремы Гаусса
- •Работа в электрическом поле
- •7. Потенциал
- •Работа при перемещении электрического заряда
- •8. Циркуляция и ротор электрического поля
- •9.Связь между е и
- •10. Поле диполя
- •11. Диполь во внешнем электрическом поле
- •12. Система зарядов: поле и энергия
- •13. Проводники в электрическом поле. Равновесие зарядов на проводнике
- •14. Электростатическая индукция
- •15. Электроемкость. Конденсаторы
- •16. Энергия заряженного проводника; конденсатора
- •17. Энергия электрического поля
- •Электрическое поле в диэлектриках
- •Поляризация диэлектриков. Поле внутри диэлектрика
- •1)Поляризация диэлектриков.
- •2)Поле внутри диэлектрика.
- •20. Объемные и поверхностные связанные заряды
- •21. Теорема Гаусса для поля в диэлектриках
- •26. Закон Ома; для неоднородного участка цепи
- •27. Правила Кирхгофа
- •28. Мощность тока
- •Мгновенная электр.Мощность
- •Дифференциальные выражения для электрической мощности
- •Мощность постоянного тока
- •Мощность переменного тока.
- •Активная мощность
- •Полная мощность
- •29. Закон Джоуля-Ленца
- •30. Классическая теория проводимости металлов
- •31. Вывод закона Ома в теории электропроводимости
- •32. Закон Джоуля-Ленца в дифференциальной форме Дифференциальная форма
- •33. Затруднения классической теории проводимости металлов
- •Термоэлектрические явления
- •Термоэлектронная эмиссия
- •1. Магнитное поле. Вектор индукции магнитного поля.
- •2. Поле движущегося заряда.
- •11. Явление электромагнитной индукции.
- •Правило Ленца. Эдс индукции.
- •Методы измерения магнитной индукции.
- •Токи Фуко. Скин-эффект.
- •15. Самоиндукция и взаимоиндукция. Индуктивность контура.
- •Энергия магнитного поля.
- •Магнитное поле в веществе.
- •18. Опыты Барнета, Штерна и Герлаха.
- •19. Диамагнетики в магнитном поле.
- •20. Парамагнетики в магнитном поле.
- •21. Ферромагнетики в магнитном поле.
- •26. Вихревое электрическое поле.
- •27. Ток смещения.
15. Электроемкость. Конденсаторы
В системе СИ единица электроемкости называется фарад (Ф)
Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками . Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.
Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением
-
Согласно принципу суперпозиции, напряженность
поля, создаваемого обеими
пластинами, равна сумме напряженностей
и
полей каждой из пластин:

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует
16. Энергия заряженного проводника; конденсатора
Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии, приобретаемой конденсатором.
В том, что заряженный конденсатор, как и любая другая система заряженных тел, обладает энергией, можно убедиться, если к пластинам заряженного конденсатора большой емкости подключить лампочку карманного фонарика. На короткое время она вспыхнет.
Любой заряженный проводник, подобно заряженному конденсатору, обладает энергией*.
* Конечно, энергией обладает и заряженный диэлектрик, но вычислить его энергию сложно. Для проводника это сделать нетрудно, так как все его точки имеют одинаковый потенциал.
Будем заряжать проводник, перемещая к нему из бесконечности электрический заряд малыми порциями Δq. Все дальнейшие рассуждения подобны использованным выше для вычисления энергии конденсатора.
При перемещении заряда Δq электрическое поле проводника совершает работу
ΔА = Δq(φ∞ - φ), (1.27.7)
где φ — потенциал проводника, имеющего заряд q. Потенциал на бесконечности считаем равным нулю (φ∞ = 0). Тогда
где С — емкость проводника. В результате энергия заряженного проводника
здесь φ — потенциал проводника (вместо напряжения U), а С — емкость уединенного тела, а не конденсатора.