
- •Основные углеводы животных, их содержание в тканях, биологическая роль.
- •Основные углеводы пищи человека, потребность в углеводах.
- •Переваривание и всасывание углеводов.
- •Глюкоза как важнейший метаболит углеводного обмена.
- •Общая схема источников и путей расходования глюкозы в организме
- •Катаболизм глюкозы.
- •Анаэробный распад глюкозы, химизм, распределение, энергетика и физиологическое значение. Субстратное фосфорилирование.
- •Г ликонеогенез. Взаимосвязь гликолиза и гликонеогенеза (цикл кори).
- •Образование фосфоенолпирувата из пирувата
- •Определение глюкозы
- •Принцип и химизм ферментативного метода определения глюкозы в крови (глюкозооксидазного).
- •П ринцип колориметрического метода определения глюкозы по реакции с орто-толуидином.
- •Принцип количественного определения сахара мочи по альтгаузену.
- •Классификация:
- •Аэробный дихотомический распад глюкозы
- •2 Этапа:
- •Челночные механизмы переноса водорода из цитозоля в митохондрии.
- •Пентозофосфатный путь превращения глюкозы, распределение и физиологическое значение, энергетика. Биологическое значение. Окислительная и неокислительная стадии, биологическое значение.
- •Сахарная нагрузка как метод, характеризующий толерантность к глюкозе.
- •1. Нормальная сахарная кривая.
- •2. Гипергликемическая кривая.
- •3. Гипогликемическая сахарная кривая.
- •Свойства и распространение гликогена. Особенности обмена. Биосинтез гликогена в печени и мышцах.
- •Синтез гликогена.
- •Распад гликогена в печени и мышцах, особенности.
- •Фосфорилированные и дефосфорилированные формы фосфорилазы и гликогенсинтетазы, регуляция активности.
- •Природные соединения, в состав которых входят гетерополисахариды представлены гликопротеинами и гликозаминогликанами
Синтез гликогена.
Гликоген синтезируется в период пищеварения (через 1-2 ч после приёма углеводной пищи). Следует отметить, что синтез гликогена из глюкозы требует затрат энергии.
Глюкоза активно поступает из крови в ткани и фосфорилируется, превращаясь в глюкозо-6-фосфат. Затем глюкозо-6-фосфат превращается фосфоглюкомутазой в глюкозо-1-фосфат, из которой под действием (УДФ)-глюкопирофосфорилазы и при участии (УТФ) образуется УДФ-глюкоза.
Н
о
в силу обратимости реакции глюкозо-6-фосфат
↔ глюкозо-1-фосфат синтез гликогена из
глюкозо-1-фосфата и его распад оказались
бы также обратимыми и поэтому
неконтролируемыми. Чтобы синтез гликогена
был термодинамически необратимым,
необходима дополнительная стадия
образования уридиндифосфатглюкозы из
УТФ и глюкозо-1-фосфата. Фермент,
катализирующий эту реакцию, назван по
обратной реакции: УДФ-глюкопирофосфорилаза.
Однако
в клетке обратная реакция не протекает,
потому что образовавшийся в ходе прямой
реакции пирофосфат очень быстро
расщепляется пирофосфатазой на 2 молекулы
фосфата.
Образованная УДФ-глюкоза далее используется как донор остатка глюкозы при синтезе гликогена. Эту реакцию катализирует фермент гликогенсинтаза (глюкозилтрансфераза). Поскольку в данной реакции не используется АТФ, фермент называют синтазой, а не синтетазой. Фермент переносит остаток глюкозы на олигосахарид, состоящий из 6-10 остатков глюкозы и представляющий собой праймер (затравку), присоединяя молекулы глюкозы, α-1,4-гликозидными связями. Поскольку праймер редуцирующим концом соединен с ОН-группой остатка тирозина белка гликогенина, то гликогенсинтаза последовательно присоединяет глюкозу к нередуцирующему концу. Когда количество мономеров в синтезирующемся полисахариде достигает 11-12 моносахаридных остатков, фермент ветвления (гликозил-4,6-трансфераза) переносит фрагмент, содержащий 6-8 мономеров, то конца молекулы ближе к ее середине и присоединяет его α-1,6-гликозидной связью. В итоге образуется сильно разветвленный полисахарид.
Синтез гликогена протекает не во всех тканях, а только в печени, мышцах и в лейкоцитах.
После образования глюкозо-6-фосфата (гексокиназная реакция) происходит внутримолекулярный перенос остатка фосфорной кислоты из 6-го положения в 1-е. При этом образуется глюкозо-1-фосфат:
После изомеризации глюкозо-6-фосфата в глюкозо-1-фосфат протекает дополнительная активация глюкозного фрагмента. При этом расходуется 1 молекула УТФ, что эквивалентно расходованию 1-й молекулы АТФ. В результате образуется активированная форма - УДФ-глюкоза:
Затем с УДФ глюкозный остаток переносится на молекулу гликогена. Удлинение цепи гликогена катализирует фермент гликогенсинтетаза. Таким образом, цепь гликогена становится на 1 глюкозный фрагмент длиннее. Гликоген, в отличие от растительного крахмала, более сильно разветвлен. Для формирования ответвлений существует специальный фермент, который называется "гликогенветвящий фермент" (стр.242 учебника).
Молекула гликогена синтезируется не с "нуля", а происходит постепенное удлинение уже имеющегося кусочка цепи: "затравки". И при распаде гликогена никогда не происходит полного разрушения его молекул.
Для включения одного остатка глюкозы в молекулу гликогена клетка расходует 2 молекулы АТФ. При распаде гликогена эта АТФ не регенерирует, а освобождается только Фн (неорганический фосфат).
Ключевым ферментом синтеза гликогена является гликогенсинтаза. Это "пункт вторичного контроля". Ее Vmax больше, чем у гексокиназы, но меньше, чем у любого другого фермента на пути синтеза гликогена.
Регуляция гликогенсинтазы: она активируется избытком глюкозо-6-фосфата. Поэтому если глюкозо-6-фосфат другими путями утилизируется медленно, то возрастание его концентрации приводит к увеличению скорости синтеза гликогена.
Реакция, катализируемая гликогенсинтазой, необратима.
В определенных условиях гликоген способен распадаться. Для этого существует свой обходной обратный путь. Его ключевым ферментом является гликогенфосфорилаза (фосфорилаза). Этот фермент расщепляет молекулу гликогена с участием Фн до глюкозо-1-фосфата и гликогена, укороченного на один глюкозный фрагмент: (С6Н10О5)n + H3PO4 ----> (C6H10O5)n-1 + глюкозо-1-фосфат
Фосфорилаза - ключевой (то есть лимитирующий и регуляторный) фермент распада гликогена.
Регуляция гликогенфосфорилазы: угнетается избытком АТФ, активируется избытком АДФ.