
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
2 Семестр,
вариант – 9
1.
Найти область определения функции
.
Является ли эта область определения
ограниченной? замкнутой?
2.
Для функции
изобразить линии уровняz
= –0,5; 1; –2. Могут
ли линии разного уровня пересекаться?
3. Изобразить объём, ограниченный поверхностями
z = x2 + y2 , z = 2 – x .
4. Сформулировать теоремы Вейерштрасса. Построив семейство линий уровня функции z = x2 + y2, определить её наибольшее и наименьшее значения в области треугольника А(1, 7), В(–7, 1), С(–5, 12).
5.
Для функции
проверить справедливость теоремы
Шварца. Проверить также, что данная
функция удовлетворяет уравнению Лапласа
.
6.
Дать определение дифференциала функции
двух переменных на данном отрезке.
Заменив приращение функции её
дифференциалом, вычислить приближенное
значение функции
в
точке (0,998;
1,004).
7. Исследовать на экстремум функцию z = (x2 – y2)(x – 3) . Изобразить на плоскости линию уровня z = 0 , области знакопостоянства функции и её критические точки.
8.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1). Для проходящего
через указанную точку решения у
= у(х)
этого уравнения найти первые три
слагаемых формулы Тейлора – Пеано.
9.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1, 1). При помощи
линеаризации найти приближенное
выражение для проходящего через указанную
точку решения z
= z(x,y) этого
уравнения.
10.
В дифференциальном уравнении
произвести замену независимых переменных
.
11. Исследовать на условный экстремум функцию z = 4x + 3y при условии
2x2 + y2 – 4x – 3y =0.
Построив кривую-условие и семейство линий уровня функции, обосновать графически полученные результаты.
12. Цены товаров Х и Y равны соответственно 4 и 7 за единицу товара. Сколько единиц товаров Х и Y следует купить на сумму Q = 140, чтобы функция полезности U = x2y3 была максимальной.
Д
КАНТ - 99
(функции многих переменных),
2 Семестр,
вариант – 10
1.
Найти область определения функции
.
Является ли эта область определения
ограниченной? замкнутой?
2.
Для функции
изобразить линии уровняz
= –0,5; 1; –2. Могут
ли линии разного уровня пересекаться?
3. Изобразить объём, ограниченный поверхностями
z = x2 + y2 , z = 2 – y .
4. Сформулировать теоремы Вейерштрасса. Построив семейство линий уровня функции z = 2x + y, определить её наибольшее и наименьшее значения в области, ограниченной линиями у = х2 , у = 2 – х .
5.
Для функции
проверить справедливость теоремы
Шварца. Проверить также, что данная
функция удовлетворяет уравнению Лапласа
.
6.
Дать определение дифференциала функции
двух переменных на данном отрезке.
Заменив приращение функции её
дифференциалом, вычислить приближенное
значение функции
в
точке (3,004;
0,996).
7. Исследовать на экстремум функцию z = (x2 – y2)(x + 3) . Изобразить на плоскости линию уровня z = 0 , области знакопостоянства функции и её критические точки.
8.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1). Для проходящего
через указанную точку решенияу
= у(х)
этого уравнения найти первые три
слагаемых формулы Тейлора – Пеано.
9.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1, 1). При помощи
линеаризации найти приближенное
выражение для проходящего через указанную
точку решения z
= z(x,y) этого
уравнения.
10.
В дифференциальном уравнении
произвести замену независимых переменных
.
11. Исследовать на условный экстремум функцию z = x2 + y2 при условии
x2 + y2 – 10x – 20y + 120 =0.
Построив кривую-условие и семейство линий уровня функции, обосновать графически полученные результаты.
12. Цены товаров Х и Y равны соответственно 2 и 4 за единицу товара. Какую минимальную сумму следует затратить на приобретение этих товаров для того, чтобы функции полезности U = xy2 приняла значение U = 8 .
Д
КАНТ - 99
(функции многих переменных),