
- •Матрицы
- •И действия над матрицами.
- •2. Умножение матриц. Согласованные матрицы.
- •Определитель квадратной матрицы. Свойства определителей.
- •4. Теорема о разложении определителя. Теорема Лапласа.
- •5. Обратная матрица. Процедура ее нахождения.
- •6. Ранг матрицы. Способы нахождения.
- •7. Невырожденные системы слау. Способы решения.
- •8. Метод Гаусса. Произвольные слау. Теорема Кронекера-Капелли.
- •9. Однородные слау. Фундаментальная система решений.
- •10. Векторы на плоскости и в пространстве. Операции над векторами.
- •1. Умножение вектора на число:
- •2. Сумма двух векторов:
- •11. Коллинеарность и компланарность. Базис. Координаты.
- •12. Скалярное произведение векторов. Определение. Вычисление. Свойства.
- •14. Смешанное произведение векторов. Определение. Вычисление. Свойства.
- •19. Взаимное расположение прямых.
- •20. Взаимное расположение прямой и плоскости.
- •21. Эллипс.
- •22. Гипербола.
- •23. Парабола.
- •24. Эллипсоид.
- •25. Гиперболоид и конус.
- •26. Параболоид.
- •27. Цилиндрические поверхности.
- •30. Графики в полярной системе координат и параметрически заданных функций.
- •31. Действительные числа.
- •32. Множества и операции над ними.
- •33. Предел последовательности.
- •34. Теоремы о пределах последовательности.
- •35. Предел функции.
- •36. Бесконечно малые и бесконечно большие функции.
- •37. Односторонние пределы.
- •38. Сравнение бесконечно малых.
- •39. Теоремы о пределах.
- •40. Первый замечательный предел.
- •41. Второй замечательный предел.
- •42. Непрерывность функции в точке.
- •43. Классификация точек разрыва.
- •44. Теоремы о непрерывных функциях. Непрерывность на отрезке. Равномерная непрерывность.
- •45. Производная функции, ее геометрический и физический смысл.
- •46. Дифференциал функции.
- •Свойства дифференциала.
- •47. Производная и дифференциал сложной функции.
- •48.Правила дифференцирования. Производные основных элементарных функций. Логарифмическое дифференцирование.
- •49. Производные и дифференциалы высших порядков. Производная параметрически заданных функций.
- •51.Монотонность функции. Экстремум. Необходимые и достаточные условия.
- •56. Предел, непрерывность и частные производные функции нескольких переменных.
- •57. Полный дифференциал. Производные высших порядков.
- •58. Касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных.
- •59. Условный экстремум функции нескольких переменных. Наибольшее и наименьшее значение функции нескольких переменных в области.
9. Однородные слау. Фундаментальная система решений.
АХ=В – система и параллельно рассмотрим систему АХ=0. (АХ=В – Неоднородн. СЛАУ, АХ=0 – однородн. СДАУ).
Одновременно выполняется:
1. АХ=0 имеет тольок тривиальное решение, АХ=В имеет единственное решение или не имеет решений совсем.
2. АХ=0 имеет нетривиальное решение, АХ=В имеет бесконечное число решений.
Рассмотрим подробнее 2-ой случай: r(A) = r(A с волной сверху)<m..
M – r(A) – дефект, количество свободных неизвестных.
Пример:
,
б.м: х1, х2
св.м: х3, х4.
х2 + х3 +2х4 = 1., х2 = 1 – а – 2b, х3 = а, х4 = b.
х1 = -2х2 – х3 + х4 + 1 = -2 + 2а +4b – а + b+1 = -1 + а + 5b.
Ответ: (-1 + а + 5b., 1 – а – 2b , а, b)Т.
Хо – общее решение ОСЛАУ
Х (с волной) – общее решение НСЛАУ
10. Векторы на плоскости и в пространстве. Операции над векторами.
Вектор – направленный отрезок, т.е. раз есть слово отрезок, значит есть начало и конец.
1. перенос отрезка при помощи параллельного переноса, не изменяет вектор.
2. вектор задается «длиной вектора» и направления.
3. если у вектора изменить направление на противоположное, то получаем противоположный вектор.
4. нулевой вектор – вектор, длина которого = 0 или начальная конечная точки совпадают. ( у нулевого вектора направление неопределенно).
Коллинеарные векторы – векторы, у которых задающие их отрезки параллельны одной и той же прямой.
Примечание: если из двух коллинеарных векторов направление одинаковое, то вектора сонаправленные, а если противоположные, то называется противоположно-направленные.
Компланарные векторы – векторы, у которых задающие их отрезки параллельны одной и той же плоскости.
Примечание: два вектора в пространстве всегда компланарны.
Примечание: два вектора называются равными, если они сонаправлены и равны по длине.
Линейные операции над векторами:
1. Умножение вектора на число:
Результатом будет вектор, коллинеарный исходному (соноправленный в случае положительного множителя и противоположно-направленный – в случае отрицательного множителя), длина которого равна произведению модуля числового множителя на длину исходного модуля.
2. Сумма двух векторов:
Есть вектор, получаемый из слагаемых при помощи правила параллелограмма или правила треугольника.
11. Коллинеарность и компланарность. Базис. Координаты.
Коллинеарные векторы – векторы, у которых задающие их отрезки параллельны одной и той же прямой.
Примечание: если из двух коллинеарных векторов направление одинаковое, то вектора сонаправленные, а если противоположные, то называется противоположно-направленные.
Компланарные векторы – векторы, у которых задающие их отрезки параллельны одной и той же плоскости.
Примечание: два вектора в пространстве всегда компланарны.
Примечание: два вектора называются равными, если они сонаправлены и равны по длине.
Базис пространства -совокупность лин независ векторов, по которым можно разложить любой вектор этого пр-ва.
Базис 3x мерного пр-ва образует любая тройка некомпланарных векторов пр-ва.
Если
образуют
базис в пространстве, то любой вектор
из
этого пространства может быть представлен:
Примечание:
для конкретно-заданного базиса не
всегда просто бывает найти коэффициент
.
Проще всего это сделать когда базис является ортонормированным.
Понятие ортонормированности распадается на понятия ортогональности и нормированности.
( перпендикулярность и длина=1).
В
3-х мерном пространстве
ортогональный
базис состоит из 3 взаимноперпендикулярных
векторов.
Ортонормированный базис состоит из 3-х взаимноперпендикулярных векторов, длина каждого из которых = 1.