Добавил:
Просто выложу некоторые труды по переработке информации, для ознакомительных целей, может кому пригодится для подготовки, как и мне. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
высшая математика1курс1сем.doc
Скачиваний:
21
Добавлен:
20.12.2020
Размер:
1.59 Mб
Скачать

6. Ранг матрицы. Способы нахождения.

Максимальное число линейно-зависимых строк матрицы A наз. рангом матрицы и обознач r(a). Наибольшее из порядков миноров данной матрицы отличных от 0 наз рангом матрицы.

Свойства:

1)при транспонировании rang=const.

2)если вычеркнуть нулевой ряд, то rang=const;

3)rang=cost, при элементарных преобразованиях.

3)для вычисл ранга с помощью элементар преобраз матрица A преобраз в матриц B, ранг которой легко находится.

4)ранг треуг матрицы=числу ненулевых элем, располож на глав. диагоналях.

Методы нахождения ранга матрицы:

    1. метод окаймляющих миноров

    2. метод элементарных преобразований

метод окаймляющих миноров:

метод окаймляющих миноров позволяет алгоритмизировать процесс нахождения ранг-матрицы и позволяет свести к минимуму количество вычисления миноров.

  1. если в матрице все нулевые элементы, то ранг = 0

  2. если есть хоть один ненулевой элемент => r(a)>0

теперь будем окаймлять минор М1, т.е. будем строить всевозможные миноры 2-ого порядка, ктр. содержат в себе i-тую строку и j-тый столбец, до тех пор, пока не найдем ненулевой минор 2-ого порядка.

М2 (i, i1, j.j1)

Дальше аналогично строим миноры 3-го порядка, окаймляющие М2 (минор), до тех пор, пока не получим минор, отличный от нуля.

Процесс будет продолжаться до одного из событий: 1. размер минора достигнет числа к.

  1. на каком-то этапе все окаймленные миноры окажутся = 0.

В обоих случаях величина ранга-матрицы будет равна порядку большего отличного от нуля минора.

Метод элементарных преобразований: как известно, понятие треугольной матрицы определяется только для квадратных матриц. Для прямоугольных матриц аналогом является понятие трапецивидной матрицы.

Например: ранг = 2.

7. Невырожденные системы слау. Способы решения.

СЛАУ принято записывать в матричной форме, когда сами неизвестные не указываются, а указывается только матрица системы А и столбец свободных членов В.

Решение невырожденных СЛАУ методом Крамера:

Х=А-1

А-1=

X1= (A11b1 + A21b2 + …+An1bn)

Теорема: (Крамера): решение невырожденных уравнений АХ=В, можно записать так:

, Ак получается из А путем замены к-го столбца на столбец свободного члена В.

8. Метод Гаусса. Произвольные слау. Теорема Кронекера-Капелли.

Система уравнений (СУ), содерж m-уравнений и n-неизвестных наз. системой вида a11x1+a12x2+…+a1nxn=b1 … aM1x1+aM2x2+…+aMnxn=bm, где aij – коэф системы и изменяется от 1 до n. Расширенной матрицей наз матрица, сост из исходной матрицы А и свободных .

Решением системы наз n значений неизвестных x1=c1 … xn=cn, при подстановке которых все ур-ия системы обращаются в верное равенство.

Система уравнений наз. совместной, если имеет хотя бы одно решение, иначе она несовместна. Совместная система наз. определённой, если она имеет единственное решение.

Системы наз. равносильными, если они имеют одно и то же решение.

Замечание: эквивалентные системы получаются при элементарных преобразованиях при условии, что преобраз вып только под строками.

СЛАУ наз однородной, если все свободные члены=0.

Теорема Кронекера-Капелли: система лин алг ур-ий совместна, когда rangA=rang (волнистая). Теорема: если rang совместной системы= числу неизвестных, то система имеет одно решение. Теорема: если ранг совмест сист < числа неизвестных, то система имеет бесконеч решений.

Правило решения СУ.

1)найти ранг основной и расширенной матрицы (если rA не =rA с крыш, то система несовместна.

2) если rA=rA с крыш и =r, то система совместна и надо найти базисный минор порядка r.

3)Берём r ур-ий из коэф которых составлен базисн минор. Остальные ур-ия отбрасываем. Неизвестные, коэф которых входят в минор наз главными. Из оставл слева, а остальные (n-r) – справа.

4)Найти выражения главных неизв через свободные. Получено общее решение системы

5)Придавая свободным низвестным произвольное значение, получим соотв значения главн неизв, т.е. найдём частные решения.