Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УММ_ДО_Статистика.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.13 Mб
Скачать

1.4 . Основные категории и понятия статистики

Статистическая совокупность – это множество варьирующих объектов, явлений, объединенных какими-либо общими свойствами и подвергающихся статистическому исследованию. Например, совокупность промышленных предприятий региона, совокупность лиц, рожденных в 1991 году и т.д.

Каждый элемент статистической совокупности называется единицей совокупности, например, в совокупности промышленных предприятий региона единицей является предприятие, в совокупности жителей населенного пункта единицей совокупности является житель.

Каждый элемент совокупности, наряду со свойством, подлежащим исследованию проявляет и другие свойства, например, студент одновременно является членом своей семьи, учащимся ВУЗа, гражданином, имеющим свои права и обязанности, жителем своего города, членом определенного молодежного коллектива и т.д.. Очень важно понимать, что задачи исследования, а, следовательно, и единица совокупности, объем исследуемой совокупности определяются самим исследователем, от правильности их определения зависят результаты исследования. Поэтому, единицу совокупности еще можно определить как наименьшая часть совокупности, обладающий всеми свойствами изучаемого явления.

Отличительная черта, свойство, качество присущие единице совокупности, и учитываемое при статистическом исследовании называются признаком.

Совокупность является однородной, если изучаемые признаки присущи всем ее элементам, и элементы относятся к одному типу явления. В неоднородной совокупности элементы ее составляющие относятся к разным типам изучаемого явления. Исчисление обобщающих характеристик для таких совокупностей неправомерно. Неоднородные совокупности изучаются с помощью метода группировок7. Совокупность никогда не бывает однородной по всем признакам, присущим единицам наблюдения: будучи однородной по какому-то одному, существенному для исследования признаку, совокупность может быть разнородна по другим признакам. Кроме того, совокупность может быть однородна в разной степени, когда явления отличаются друг от друга, варьируют в большей или меньшей степени.

Необходимо подробнее остановиться на понятии вариации. Изменение величины признака в статистической совокупности, т.е. наличие у единиц совокупности разных значений признака, являющееся следствием воздействия на элементы совокупности множества различных причин (факторов), называется вариацией. Собранные в ходе статистического наблюдения и подвергнутые первичной обработке данные представляют собой ряд распределения. Если ряд распределения построен по количественному признаку, то такой ряд называется вариационным. Можно выделить несколько видов вариационного ряда: ранжированный, дискретный и интервальный.

Если в качестве изучаемого признака принимается качественный признак, то такой ряд распределения будет называться атрибутивным. Например, все население какого-либо населенного пункта по уровню полученного образования можно распределить на группы населения, не имеющего образования, получившего начальное образование, получившего среднее общее образование, получившего среднее специальное образование и т.д. Такой ряд распределения и будет называться атрибутивным. Если единицы совокупности расположены в порядке возрастанияили убывания, то такое расположение называется ранжированным рядом. Если изучаемый признак имеет такой вид, что значения его отличаются друг от друга на какую-то определенную минимальную величину, то есть в основу построения вариационного ряда положен дискретный признак (см. ниже), то строится дискретный ряд. В нем каждому значению изучаемого признака соответствует частота его появления. Если значений дискретного признака слишком много или в основу вариационного ряда положен непрерывный признак, то его удобно представить в интервальном виде. Такой вариационный ряд будет называться интервальным, в котором каждому интервалу будет соответствовать частота появления признака определенного размера.

Вариация совокупности может быть альтернативной, когда признак принимает одно из двух значений, систематической, когда изменение признака идет в определенном направлении, не обусловленном внутренним законом развития явления, случайной, не имеющей явно выраженного направления и характеризуется с помощью системы показателей вариации (см. Лекцию 4). Значение признака называется вариантом, причем некоторые единицы могут иметь совпадающие варианты. В разговорной речи в этом значении более употребимо слово «варианта».

Статистика рассматривает явления с помощью изучения значений определенных признаков. Признаки, от характера которых зависит выбор применяемых в исследовании методов, могут быть классифицированы следующим образом:

  1. По характеру выражения:

    • Описательные (качественные);

    • Количественные.

  2. По способу измерения:

    • Первичные;

    • Вторичные (или расчетные).

  3. По отношению к характеризуемому объекту:

    • Прямые (непосредственные);

    • Косвенные.

  4. По характеру вариации:

    • Альтернативные;

    • Дискретные;

    • Непрерывные.

  5. По отношению ко времени:

    • Моментные;

    • Интервальные.

1. Описательные (качественные) признаки – признаки, значения которых имеют выражение в форме понятий, наименований. Например, уровень образования, как признак может принимать значения: начальное, среднее общее, среднее профессиональное, высшее профессиональное и др. Описательные признаки, в свою очередь, делятся на номинальные и порядковые. Их отличие состоит в том, что номинальные признаки нельзя ранжировать, тогда как с помощью порядковых признаков данные можно ранжировать, упорядочивать. В качестве примера номинального признака можно привести цвет глаз у людей, исследование такого признака может иметь место в биометрии.

Количественные признаки – признаки, значения которых выражаются в форме чисел. Например, число студентов в группе, количество машин в автохозяйстве и т.д.

2. Первичными признаками называются признаки, характеризующие абсолютные размеры социально-экономических явлений, выражающиеся в единицах меры протяженности, площади, массы (веса) и т.п., в единицах счета времени, в денежных единицах или в виде числа единиц совокупности. Форма выражения первичных признаков называется абсолютной величиной. Например, протяженность заасфальтированных дорог в муниципальном образовании, или численность сотрудников хозяйствующего субъекта и т.д.

Вторичные (расчетные) признаки – признаки, образующиеся в результате соотношения первичных признаков. Например, отношение объема собранного урожая к размеру посевной площади дает показатель урожайности. Сущность вторичных признаков определяет методику работы с ними: сначала необходимо получить значения первичных признаков, а затем полученные данные соотносить. Несмотря на расчетный характер вторичных признаков, они также являются отражением объективных свойств явлений и процессов.

3. Прямые (непосредственные) признаки – это признаки, выражающие качества, непосредственно присущие единице совокупности.

Косвенные признаки отражают качества, не принадлежащие непосредственно объекту статистического исследования, они характеризуют другие совокупности, имеющие отношение к объекту. Например, эффективность работы государственного служащего администрации региона с одной стороны служит характеристикой государственного служащего, и, одновременно, с другой стороны может отражать уровень работы региональной администрации в целом, т.е. эффективность государственного служащего – косвенный признак, характеризующий деятельность государственного аппарата.

4. Альтернативными признаками называются те признаки, значения которых выражаются только через два значения. Например, пол человека (либо мужской, либо женский), наличие веры (верующий, атеист), использованность товара (новый, бывший в употреблении) и т.д. Как правило, такие признаки указывают на обладание чем-либо.

Дискретные признаки – это признаки, выражающиеся в форме числа и принимающие только определенное значение. То есть, значения дискретного признака по какой-либо причине не могут отличаться друг от друга меньше, чем на определенную величину. Например, число человек (не может быть меньше одного человека), число сданных объектов строительства (не может быть меньше одного объекта) и т.д.

Непрерывные признаки – признаки, значения которых могут изменяться без ограничений, например, курс иностранной валюты; средний балл в зачетной книжке и т.д. Большинство непрерывных признаков составляют вторичные признаки, которые, являясь результатом соотношения первичных признаков, могут принимать форму целых, дробных, иррациональных чисел. Чтобы непрерывные признаки можно было использовать в дальнейшем анализе, их значения округляют до определенной степени точности, после чего признаки называются квазидискретными.

5. Моментные признаки – признаки, содержащие величины на определенный момент времени, например, на начало (конец) года, квартала, месяца т.п. Например, объем муниципального жилищного фонда в г. Тюмени на конец 2000 года (м2); наличные деньги по Ханты-Мансийскому автономному округу на 01.01.01 (млрд. руб.). В таблице 1.2. приведен еще один пример ряда распределения моментного признака:

Табл. 1.2. Число вкладов населения в коммерческом банке (на начало года, млн.руб.)

1996 г.

1997 г.

1998 г.

1999 г.

2000 г.

12,57

13,45

16,53

11,32

19,87

Интервальные признаки – признаки, у которых значения отражаются за определенный период, например, за год, за квартал, за месяц. Например, объем продаж муниципального жилищного фонда в г. Тюмени за 2000 год (м2); количество выставок, открытых Государственным Эрмитажем в 2000 г. (шт.) В таблице 1.3. ниже приведен пример ряда распределения интервального признака:

Табл. 1.3. Годовой объем иностранных инвестиций в экономику региона

Годы

Объем иностранных инвестиций, тыс. долл.

В том числе на душу населения, долл США

1995

30,0

0,0375

1996

57,0

0,0731

1997

142,0

0,1753

1998

175,8

0,2131

Исследование изменений общественных явлений, выраженных с количественной стороны, и определенных в качестве предмета статистической науки, производится с помощью статистических показателей.

Статистическим показателем называют количественно-качественную характеристику социально-экономических явлений и процессов. Атрибуты статистического показателя представлены в таблице 1.4.

Приведем примеры статистических показателей и рассмотрим их структуру:

1. Численность экономически активного населения РФ в 1994 году, на конец года – 74 млн. чел.[14]. Здесь качественной стороной является число человек, являющихся экономически активным населением с точки зрения российского законодательства. Количественной стороной – число «74», единицей измерения – «млн. чел.». Границы объекта определены как территория РФ, в границах которой и проживает исследуемое население. Время определено как 1994 год, причем данный показатель отражен на определенный момент времени, следовательно, и признак, и полученный на его основе показатель можно назвать моментными.

Табл. 1.4. Атрибуты статистического показателя

Качественная сторона: объект, его свойство, категория

Количественная сторона: число и его единицы измерения

Территориальные, отраслевые и иные границы объекта исследования

Указатель (определитель) интервала или момента времени

2. Платные туристско-экскурсионные услуги по региону в 1999 году – 21% (от общего объема услуг). Здесь качественной стороной является доля туристско-экскурсионных услуг в общей массе платных услуг, оказанных населению, проживающему на территории региона. Количественной стороной является число «21», единицей измерения – «%». Границы объекта определены как регион Российской Федерации, в границах которого проживает население, потребляющие данные услуги. Время указано 1999 год, причем данный показатель отражен за весь год, т.е. определенный интервал времени, следовательно, и признак, и полученный на его основе показатель можно назвать интервальными.

Перечень статистических показателей определяется в ходе разработки программы наблюдения . Тем самым определяются характеристики общественных явлений, которые необходимо выявить в процессе статистического исследования. Так как общественные явления тесно взаимосвязаны между собой и оказывают друг на друга определенного рода влияние, то показатели, характеризующие однородные или однотипные процессы, объединяются в систему статистических показателей. За период становления статистической науки был разработан ряд систем статистических показателей, например, система показателей экономической деятельности в разрезе ее отраслей, система показателей, отражающих уровень жизни и человеческий потенциал и т.д.

Прежде чем рассматривать виды показателей необходимо определить особенности понятия «величина». Величина – количественная характеристика размеров социально-экономических явлений, их соотношения, степени изменения, взаимосвязи. Величины делятся на абсолютные, относительные и средние. Абсолютные величины характеризуют реальные, существующие в действительности, и доступные для статистического наблюдения и регистрации, размеры явления. Как указывалось выше, явления в абсолютных величинах отражаются с помощью первичных признаков. Абсолютные величины по единицам измерения подразделяются на натуральные, условно-натуральные и стоимостные. Относительные величины отражают относительные размеры явления в виде коэффициентов, процентов и т.д. (см. Лекцию 3). Средние величины характеризуют размер признака, приходящегося на единицу совокупности (см. Лекцию 4). Таким образом, понятие «величина», являясь близким понятию «количественная сторона показателя», заключает в себе более широкую характеристику статистического показателя, нежели просто его цифровое выражение: оно также свидетельствует о методе расчета показателя.

Единица измерения – значение, в котором выражается и с которым сравнивается исследуемая величина. Единицы измерения статистического показателя определяются его содержанием. Например, число родившихся младенцев, рассчитанное на каждую тысячу жителей региона, будет измеряться в промилле, которое обозначается как «‰».

Для лучшего понимания сущности показателей разработана классификация статистических показателей.

I. Применительно к содержанию показатели делятся следующим образом:

  1. По охвату единиц совокупности:

    • индивидуальные;

    • сводные:

объемные;

расчетные.

  1. По временному фактору:

    • плановые;

    • отчетные;

    • базисные.

  2. По отношению к характеризуемому свойству:

    • прямые;

    • обратные.

II. Применительно к форме выражения статистические показатели делятся на:

  • абсолютные;

  • относительные;

  • средние.

Индивидуальные показатели – показатели, характеризующие исследуемый процесс по одной единице совокупности.

Сводные показатели – показатели, характеризующие общественное явление по группе исследуемых единиц; они делятся на объемные и расчетные.

Сводные объемные показатели – показатели, получаемые путем сложения значений признака каждой единицы совокупности. Величина, образуемая при исчислении данного показателя, называется объемом признака. Предполагается несколько вариантов расчета и анализа указанной величины:

а) рассчитанная величина «объем признака» – сама по себе уже является определенной характеристикой социально-экономического явления. Например, объем производства молочной продукции предприятиями г. Тюмени в 2000 г. Такой показатель называют также «определяющий показатель»;

б) в случае сравнения данной величины с другой взаимосвязанной величиной будет получен объемный относительный показатель. Например, в результате отношения объема производства молочной продукции предприятиями г. Тюмени в 2000 г. к объему производства молочной продукции предприятиями г. Заводоуковска в 2000 г. получится величина, показывающая во сколько раз в Тюмени производится больше молочной продукции, чем в Заводоуковске;

в) в результате сравнения определяющего показателя «объем признака» с объемом совокупности получится средний показатель. Например, если объем производства молочной продукции предприятиями г. Тюмени в 2000 г. разделить на число предприятий, занимающихся производством молочной продукции в г. Тюмени в 2000 г., то полученная величина покажет сколько в среднем молочной продукции было произведено одним предприятием (или сколько молочной продукции приходится на одно предприятие).

Расчетные сводные показатели – показатели, которые рассчитываются с помощью специальных формул и математических методов, и применяются для анализа сложных общественных явлений.

Плановые показатели – показатели, величина которых отражает уровень изучаемого явления, который должен быть достигнут в соответствии с планом. Например, планируется, что в 2002 г. в Тюменской области размер областного бюджета по расходам составит 17022421 тыс. рублей.

Отчетные показатели – показатели, величина которых отражает уровень изучаемого явления, достигнутый в исследуемом периоде (если признак моментный) или за исследуемый период (если признак интервальный). Например, в 2001 году размер областного бюджета по расходам был утвержден в размере 13843742 тыс. рублей.

Базисные показатели – показатели, величина которых принимается в качестве базы для сравнения. Например, для анализа бюджета по расходам Тюменской области на 2002 год в качестве базы для сравнения послужит бюджет по расходам Тюменской области за 2001 год.

Прямые показатели – показатели, которые непосредственно характеризуют изучаемое свойство. Как правило, упоминаются вместе с обратными показателями, являющимися в математическом смысле обратными величинами для прямых показателей. Например, обозначим количество человек, зарегистрированных как имеющих право на получение жилой площади в городе N в 2000 г. как «Ч», а объем введенной в строй жилой площади (в м2) в этом городе в 2000 г., допустим, – «П».

а) Если объем введенной в строй жилой площади «П» соотнести с количеством человек, зарегистрированных как имеющих право на получение жилой площади «Ч», то величина , полученная в результате деления, покажет, сколько введенных в строй квадратных метров жилой площади приходится на одного жителя, имеющего право на ее получение в 2000 г.

б) Если количество человек, зарегистрированных в списках имеющих право на получение жилой площади «Ч», соотнести с объемом введенной в строй жилой площади «П», то величина будет показывать, сколько человек, нуждающихся в жилой площади приходится на один квадратный метр, введенный в строй в 2000 г.

Абсолютные показатели – показатели, отражающие свойства явления, выраженные первичными признаками. Такие показатели являются результатом первичного учета и выражаются в абсолютных величинах.

Относительные показатели – показатели, получающиеся путем соотношения абсолютных показателей. Выделяют несколько видов относительных показателей. В результате расчета относительных показателей получаются коэффициенты, единицы измерения и др.

Средние показатели – показатели, характеризующие величину изучаемого признака, приходящуюся на единицу совокупности. Получаются путем соотношения сводных объемных (определяющих) показателей, выражающих исследуемый признак, с числом единиц совокупности, обладающих этим признаком. Например, если соотнести фонд заработной платы государственных служащих в регионе А (определяющий показатель) с числом государственных служащих в этом регионе (число единиц совокупности), то результат будет отражать средний размер заработной платы государственных служащих.

Необходимо отметить существенную разницу между признаком и показателем. Являясь индивидуальной характеристикой, признак определяет качественное содержание объекта исследования; первичные признаки объектов существуют независимо от исследователя. Тогда как показатель – обобщающая характеристика, кроме того, по одному признаку можно построить несколько показателей.

В статистическом анализе признаки подразделяются по характеру влияния друг на друга:

1. Признак-результат – признак, анализируемый в данном исследовании. Индивидуальные размеры такого признака у отдельных элементов совокупности подвержены влиянию одного или нескольких других признаков. Другим словами, признак-результат рассматривается как следствие взаимодействия других факторов.

2. Признак-фактор – признак, оказывающий влияние на исследуемый признак (признак-результат). Причем зависимость между признаком-фактором и признаком-результатом может быть количественно определенна. Синонимами данного термина в статистике являются, «факторный признак», «фактор». Следует различать понятия признака-фактора и признака-веса. Признаком-весом называют такой признак, который необходимо учесть при расчетах. Но, признак-вес не оказывает влияния на исследуемый признак. Признак-фактор может рассматриваться как признак-вес, т.е. учитываться при расчетах, но не всякий признак-вес является признаком-фактором. Например, при исследовании в группе студентов зависимости между временем подготовки к экзамену и количеством баллов, полученных на экзамене должен учитываться и третий признак: «Количество человек, аттестованных на определенный балл». Последний признак не является влияющим на результат, однако, будет включен в аналитические расчеты. Именно такой признак и называется признаком-весом, а не признаком-фактором.

Таким образом, можно сравнить понятия, приведенные выше.

Каждая единица совокупности обладает множеством взаимосвязанных признаков. Исследователь, исходя из цели изучения явления, выделяет отдельные признаки, и определяет объем совокупности. В пределах этой совокупности значения выделенных признаков у каждой единицы различаются, то есть варьируют. На основе выделенных признаков определяются показатели, которые объединяются в систему показателей, отражающих взаимосвязь между этими признаками. Данные по определенным показателям называют величинами.

Чтобы закончить ознакомление с основными понятиями и категориями, необходимо определить еще одно понятие – «период». Периодом называется момент или интервал времени, являющийся составной частью структуры статистического показателя. Применение понятия «период» в статистике обусловлено расчетом относительных показателей, когда помимо множества факторов, влияющих на изменение общественного явления, учитывается также фактор времени. В статистике выделяют несколько видов периодов:

1. Базисный период – период времени, со значением которого сравнивается значение другого периода (отчетного, см. ниже). Значение показателя, принятого за основу для сравнения называют еще «базисной величиной». Если в основу такого показателя положен моментный признак, то в качестве периода выступает определенная дата. Как правило, другой, отчетный период является последующим по отношению к базисному, то есть, расположен правее по вектору времени. Однако существуют исключения, например, в статистике производительности труда, когда анализ производится с применением обратного показателя – трудоемкости. При построении относительного показателя данные за базисный период располагаются в знаменателе дроби, то есть являются базой для сравнения. Для величины, принимаемой в качестве базисной, введено специальное обозначение в виде подстрочного значка « 0 ». Например, если за какой-то период уровень заработной платы, обозначенной « l », принимается за основу для сравнения, то он будет обозначаться как « 0 ».

2. Второй вид периода, называемый отчетный период, имеет два значения:

а) отчетный период – период времени, значение которого сравнивается со значением другого периода, базисного. Сравниваемое значение показателя называют еще «отчетной величиной». В качестве периода выступает определенная дата, если в основу такого показателя положен моментный признак. При построении относительного показателя данные за отчетный период располагаются в числителе дроби. Для величины, принимаемой в качестве отчетной, введено специальное обозначение в виде подстрочного значка « 1 ». Например, если необходимо сравнить уровень заработной платы за какой-то период с уровнем заработной платы за другой период, то он будет обозначатся как « l1 ».

б) отчетный период – период, по истечении которого предоставляется очередная статистическая отчетность.