- •1. Новые технологии по подготовке нефти в соответствии с новыми нормативными документами.
- •Исключение делается лишь для так называемых уникальных нефтей, по-
- •Деэмульгаторы
- •Основные свойства деэмульгаторов и эффективность их действия
- •Классификация деэмульгаторов по фенольному числу
- •Особенности применения деэмульгаторов в системе сбора
- •Обозначим:
- •Обобщённая методика гидравлического расчета
- •Предварительный сброс пластовых вод
- •Теоретические основы гравитационного разделения фаз
- •Поскольку нахождение φф достаточно проблематично, гораздо удобнее
- •2. Технологический расчет отстойной аппаратуры
- •2.1.2. Точный расчет (на примере горизонтального отстойника с подачей эмульсии под водяную подушку).
- •2.2.2. Определение высоты отстойника
- •Ограничимся лишь рассмотрением простейшего случая нестационарного
- •Данный агрегат (Рис.22) был сконструирован как отстойник для оконча-
- •Сбор, подготовка и утилизация промышленных сточных вод
- •2. Новые технологии сепарации газа и его подготовки до требований нормативных документов.
- •2.1. Разгазирование продукции cкважин
- •Способы выделения газа из нефти
- •Осушка газа абсорбцией
- •Процессы химической абсорбции
- •Очистка с помощью других алканоламинов
- •Процессы с физической абсорбцией
- •6. Процесс Криофак
- •Процессы смешанной абсорбции
- •1. Таунсенд - процесс
- •2. Сульфинол - процесс
- •3. Оптнзол - процесс
- •Очистка газов от агрессивных примесей методом адсорбции
- •Очистка газов с помощью мембранных технологий
- •Очистка газа с помощью дистилляционных методов
- •Компрессорный метод
- •Адсорбционный метод.
- •Абсорбционный метод
- •3. Новые технологии утилизации нефтяных шламов 3.1. Общие сведения.
- •3.2. Методы утилизации нефтяных шламов
- •1.1. Сжигание нефтешламов.
- •1.2. Испарение нефтешламов с их частичным разложением
- •В основе технологии лежит процесс термической обработки шлама на лен-
- •1.3. Полное разложение (пиролиз) нефтешламов.
- •2. Биологические методы
- •Недеструктивные методы
- •1. Механические методы
- •1.1. Фильтрационные методы
- •1.2. Центробежные методы.
- •1.3. Отстейно - сепарационные методы
- •2. Непосредственное использование шлама.
- •3. Экстракционные методы
- •Сравнительные извлекающие характеристики применяемых растворителей
- •4. Захоронение нефтешламов
- •5. Методы комплексной переработки шламов
- •5. Методы борьбы с отложениями солей.
- •4. Методы борьбы с отложениями солей.
- •2. Безреагентные методы.
- •Методы борьбы с коррозией
- •1. Общие сведения.
- •3 . Способы борьбы с коррозией.
- •Остальные материалы в силу дороговизны или нетехнологичности, или ог-
- •Отходы производства гербицидов (карахола, ацетила, мукохлорной кисло-
Процессы химической абсорбции
Характерной особенностью подобных процессов является высокая поглотительная ёмкость (прежде всего по отношению к H2S) уже при низких давлениях и высокая избирательность поглощения по отношению к углеводородам, что позволяет применять их для очистки жирных газов. Общие недостатки - значительный расход тепла и потери абсорбента за счет уноса, необратимых реакций и разложения.
1. Наиболее старым процессом в этой группе является щелочная очистка гидрокарбонатным, поташным способом, применением каустической соды и тому подобных веществ. В последние 40 лет эти процессы практически полностью вытеснены более современными. Эти процессы обладали высокой се-
лективностью по отношению к кислотным компонентам, были достаточно быстры (особенно в присутствии катализаторов), просты и дешевы, но степень извлечения не превышала 95 %, что совершенно не удовлетворяет современным требованиям.
Примером может служить Сиборд-процесс, в котором поглощение сероводорода осуществлялось водным раствором Nа2СО3 с регенерацией абсорбента воздухом.
2. Очистка с помощью алканоламинов.
По химической структуре они делятся на первичные (моноэтаноламин -МЭА и дигликольамин - ДГА), вторичные (диэтаноламин - ДЭА и диизопропано-ламин - ДИПА) и третичные (триэтаноламин - ТЭА и метилдиэтаноламин -МДЭА).
Все они являются слабыми органическими основаниями и поэтому реагируют с кислыми газами с образованием соответствующих солей. Для всех этих реагентов поглощение проводится при обычной температуре и повышенном давлении, а регенерация - при давлении близком к атмосферному и повышенной температуре.
Промышленное применение нашли только 4 алканоламина - МЭА, ДЭА, ДГА и МДЭА - которые существенно различаются по своим свойствам и эксплуатационным характеристикам,
а) МЭА-процесс
До 70-х годов являлся наиболее распространённым способом очистки. Характеризуется высокой поглощающей способностью, возможностью достижения высоких степеней очистки и лёгкостью регенерации. Особенно эффективен при давлениях менее 1,4 МПа и исходной концентрации кислых компонентов до 15 % об. Реагент применяется в виде 10 - 20 % водного раствора со степенью насыщения кислыми компонентами не более 0,25 - 0,45 моль/ моль, в противном случае, оборудование будет подвергаться интенсивной коррозии. К другим недостаткам процесса относятся: высокий расход реагента из-за уноса с уходящим газом мелкодисперсных капель раствора в результате вспенивания, высокой упру-
гости паров МЭА, потерь МЭА из-за необратимых реакций с СС2 , COS и CS2; его малая эффективность при удалении меркаптанов и высокие затраты на регенерацию.
Существует несколько модификаций технологических установок, реализующих подобный процесс, отличающихся, в зависимости от страны изготовителя как производительностью, так и деталями оформления схемы. Так, в России институтом ГИПРОВостокНефть и ЦКБН разработаны установки для очистки газа от H2S МЭА с пропускной способностью 100 и 300 тыс.м3/сутки в блочном исполнении на рабочее давление от 6 до 17 атм. (рис.60).
Рис.60. Технологическая схема МЭА - процесса Установка работает следующим образом:
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
__________________________________________________________________________________________________________________________________
б) ДЭА - процесс
В последние 20 лет успешно применяется наряду с МЭА. По сравнению с МЭА он имеет следующие преимущества: образует с COS и CS2 легко разлагаемые соединения, разрушающиеся на стадии регенерации и целесообразен для ещё более жирных газов. Упругость паров ДЭА при 40°С почти в 300 раз меньше, чем у МЭА, что существенно сокращает потери абсорбента. Насыщение ДЭА H2S может превышать 0,5 моль кислых газов на моль амина без опасности усиления коррозии, а для его регенерации необходимо гораздо меньший расход пара, ибо его связь с H2S существенно слабее. Таким образом, лёгкость регенерации и высокая поглотительная способность, обусловленная не только слабой коррозионной активностью, но и более высокой исходной концентрацией (до 35 %), делают этот процесс весьма конкурентноспособным, особенно при концентрации кислых компонентов от 10 до 25 % об.
К недостаткам процесса следует отнести меньшую реакционную способность ДЭА по сравнению с МЭА, что обеспечивает ему меньшую эффективность при небольших концентрациях агрессивных компонентов.
Существует несколько модификаций технологических установок, реализующих подобный процесс, отличающихся, в зависимости от страны изготовителя, как производительностью, так и деталями оформления схемы.
Наиболее широкое распространение получил модифицированный процесс ДЭА - очистки, имеющий название SNPA - ДЭА, который был разработан в конце 50-х годов во Франции. В настоящее время в мире насчитывается более 200 подобных установок (рис.61), причём, основное отличие от установок МЭА сводится к отсутствию куба-регенератора, испаряющего реагент.
Рис.61. Технологическая схема SNPA - ДЭА - процесса Установка работает следующим образом:
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Конкурентоспособность установок МЭА и ДЭА в настоящее время поддерживается только за счет постепенного, но непрерывного повышения концен-
трации МЭА и ДЭА в циркулирующих водных растворах. Именно такой подход позволяет снизить циркуляцию и увеличить насыщенность аминов поглощаемыми кислыми компонентами. К настоящему времени мольное содержание МЭА в
рабочем растворе удалось поднять до 30 %, а ДЭА до 55 %, что позволило сократить эксплуатационные затраты до 40 %. Такое нарастание концентрации даётся нелегко, т.к. даже при соблюдении описанных выше значений концентраций скорость коррозии такова, что наиболее уязвимые узлы (теплообменники, рибойлеры служат не более 2-4 лет. Причём, помимо общей коррозии наблюдается интенсивное растрескивание трубопроводов насыщенного и регенерированного растворов абсорбентов. Именно поэтому на таких установках огромное внимание уделяется ингибиторной защите оборудования от коррозии.
В России, в основном, используется разработанный в ВНИПИГазоперера-ботке ингибитор на основе полисульфидов, дозировка которого в исходный реагент не превышает 0,002 % в пересчете на серу.
В западных странах наибольшее распространение получили ингибиторы американских фирм Onion Carbide Corp. и \Warnen Petroleum Co, основанные на синергетическом действии двух окислительных пассиваторов (например, марки ST).
Кроме «реагентного» подхода, в последние годы многими фирмами предпринимаются попытки усовершенствования самой технологической схемы и аппаратурного оформления процесса. Заслуживают внимания результаты, полученные французской фирмой SNRA и американскими фирмами Bryan Research and Engineering Inc и Propak Systems Ltd. Исходя из положения, что основные затраты приходятся на энергию, необходимую для доведения регенерированного абсорбента до рабочего давления и на тепло, необходимое для регенерации, французы предложили оригинальный способ рекуперации тепла за счёт вывода регенерированного абсорбента через промежуточный сепаратор с возвратом выделившихся горячих паров в десорбер. Американцы же предложили делать абсорбер переменного сечения, ибо в нижней части на 3 - 4 тарелках поглощается до 99 % H2S; а, в случае газа низкого давления с содержанием H2S до 10 % использовать
два последовательных абсорбера низкого и высокого давления с промежуточным компримированием. 99 % сероводорода будет поглощаться в 1 аппарате.
в) ДГА - процесс
Данный процесс был разработан американской фирмой Fluor Engineers and Constructors Co и применяется в промышленности с 1965 года. В настоящее время в мире действует более 30 подобных установок самых различных модификаций (наиболее известные - процесс Эконамин и процесс Бенфильд
Основные преимущества ДГА процесса по сравнению с МЭА сводятся к следующему:
1. Высокая концентрация исходного реагента в водном растворе (50-90%),
что позволяет уменьшить кратность циркуляции от 20 до 40 %, сократить расход тепла на 20 %, уменьшить размеры аппаратов, сократив, тем самым, капитальные и эксплуатационные затраты.
2. Помимо очистки газа от кислых компонентов, одновременно осуществляется и его обезвоживание.
3. Метод гарантирует качественную очистку газа в широком диапазоне исходных концентраций кислых компонентов (от 1,4 до 35,0 % об.).
4. Низкая температура застывания реагента, что позволяет применять его в условиях холодного климата.
5.Низкое вспенивание.
6. Незначительная коррозия.
7. Процесс осуществляется при существенно более низком давлении (7-12 атм) и более высокой температуре (до 60°С).
8. Низкая растворимость углеводородов С5+высш в реагенте.
9. Возможность осуществить очистку в одну ступень (без использования частично восстановленного реагента).
10. Относительно лёгкая регенерация. Очищенный подобным образом газ содержит:
1-2 мас.части сероводорода на миллион и менее 100 частей углекислого газа.
К недостаткам ДГА - процесса (рис.61.) следует отнести его высокую стоимость и значительные потери в процессе из-за побочных реакций и уноса.
Рис.61. Технологическая схема ДГА - процесса. Установка работает следующим образом:
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________МДЭА - процесс
Данный процесс был разработан американской фирмой DOW Chemical Co
и впервые применён в промышленном масштабе в 50-х годах фирмой Fluor Corp.
Процесс известен в 2-х вариантах: без применения активатора и с применением активатора. В первом случае МДЭА обладает значительной селективностью по отношению к H2S и R-SH, т.е. удаления СО2 практически не происходит. Во втором случае селективность подавляется и из газа могут быть удалены все кислые компоненты. Активатор разработан немецкой фирмой BASF и его добавка к МДЭА придаёт последнему свойства смеси химических и физических растворителей, что позволяет проводить частичную регенерацию простым снижением дав ления, а окончательную регенерацию осуществлять без перегонки реагента, т.к. при осуществлении очистки продукты разложения и осмоления не образуются. Преимуществами МДЭА, кроме этого, являются низкие капитальные и эксплуатационные затраты, обусловленные низкой кратностью циркуляции, меньшие размеры оборудования и расходы тепла, а также низкая скорость коррозии (не более 0,04 мм/год). К недостаткам следует отнести высокую стоимость реагента, превышающую ~ в 2,5 раза стоимость МЭА и ДЭА. Технологическая схема установки приведена на рис. 62.
Рис.62. Технологическая схема МДЭА - процесса
Установка работает следующим образом:
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
