
- •Глава 1
- •§ 1. Основные понятия, определения и классификация систем автоматики
- •§ 2. Классификация элементов систем автоматического управления
- •§ 3. Принципы схемного отображения технологических объектов, процессов и систем управления
- •Глава 2 воспринимающие элементы систем автоматики
- •§ 4. Воспринимающие элементы перемещений
- •§ 5. Датчики усилий
- •§ 6. Датчики частоты вращения
- •§ 7. Датчики углов поворота
- •§ 8. Воспринимающие элементы температур
- •§ 9. Воспринимающие элементы давления
- •§ 10. Воспринимающие элементы расхода и уровня
- •Глава 3
- •§ 12. Усилительные элементы
- •§ 13. Вычислительные и логические элементы
- •§ 14. Исполнительные устройства с электродвигателями
- •§ 15. Исполнительные механизмы с электромагнитными
- •§ 16. Пневматические и гидравлические исполнительные механизмы
- •§ 17. Регулирующие органы и их характеристики
- •Глава 4 системы автоматического контроля
- •§ 18. Основные понятия об измерениях и средствах измерений
- •§ 19. Структура и назначение систем контроля
- •§ 20. Измерительные схемы и вторичные приборы
- •§ 21. Преобразование сигналов и системы передачи показаний на расстояние
- •§ 22. Автоматический учет сырья
- •§ 23. Автоматический контроль линейных размеров
- •§ 24. Автоматический контроль качества поверхности
- •§ 25. Автоматический контроль температуры
- •3. Приборы для измерения температуры табл
- •§ 26. Автоматический контроль уровня
- •§ 27. Автоматический контроль влажности
- •§ 28. Автоматический контроль расхода и давления
- •§ 29. Автоматический контроль работы оборудования
- •§ 30. Информационно-измерительные системы
- •Глава 5
- •§ 32. Структурные схемы и их преобразование
- •§ 33. Классификация звеньев по динамическим свойствам
- •§ 34. Характеристики автоматических систем управления
- •§ 35. Инженерные методы расчета и выбора регуляторов
- •§ 36. Элементы построения оптимальных систем управления
- •Глава 6
- •§ 37. Основные понятия и определения
- •§ 38. Основные формализованные языки описания логических систем управления
- •§ 39. Синтез однотактных систем логического управления
- •6. Таблица состояний
- •Глава 7
- •§ 41.ГПреимущества автоматизированных производств
- •§ 42. Оптимизационная математическая модель производства
- •§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
- •§ 44. Влияние надежности на эффективность автоматизации деревообрабатывающих производств
- •Глава 8
- •§ 45. Характеристика производственных процессов и производств
- •§ 48. Регулирование потока и запаса материала
- •§ 49. Технологические основы управления дискретными производственными процессами
- •Глава 9
- •§ 50. Взаимосвязь параметров при механической обработке древесины
- •§ 51. Системы автоматического управления режимами обработки деталей
- •§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
- •§ 53. Особенности динамики систем стабилизации частоты вращения (режимов обработки)
- •§ 54. Оптимизация динамических свойств автоматических систем управления
- •Глава 10
- •§ 55. Типовые блокировочные связи в системах управления
- •7. Основные виды межузловых связей
- •§ 56. Системы управления станками пиления древесины
- •§ 57. Системы управления станками строгальной и фрезерной групп
- •§ 58. Системы управления шипорезными, сверлильными, долбежными и лущильными станками
- •§ 59. Системы управления автоматами на базе механических программоносителей
- •§ 60. Системы программного управления
- •§ 61. Самонастраивающиеся системы управления
- •§ 62. Микропроцессоры и микроэвм в системах управления
- •9. Символьное обозначение команд
- •§ 63. Основные сведения о манипуляторах, роботах и системах управления ими
- •Глава 11
- •§ 64. Классификация станочных линий
- •§ 65. Структура автоматических линий
- •§ 66. Эффективность функционирования автоматических
- •§ 67. Линии раскроя плит
- •§ 68. Линии облицовывания плит
- •§ 69. Линии брусковых деталей
- •§ 70. Линии повторной обработки щитовых деталей
- •§ 71. Линии отделки
- •§ 72. Линии сортировки
- •Глава 12
- •§ 73. Управление загрузчиками автоматических
- •§ 74. Схемы управления разгрузчиками автоматических линий
- •§ 75. Транспортно-ориентирующие устройства автоматических линий и системы управления ими
- •§ 76. Устройства автоматического позиционирования
- •Глава 13
- •§ 77. Характеристика складов деталей и комплектующих изделий
- •§ 78. Системы управления складами
- •§ 79. Автоматизация транспортных работ
- •Глава 14
- •§ 80. Управление процессами сушки в лесосушильных камерах
- •§ 81. Управление процессом сушки в конвейерных сушилках
- •§ 82. Управление процессом сушки в барабанных сушилках
- •§ 83. Управление режимом горячего прессования
- •§ 84. Управление процессами пропарки древесины
§ 9. Воспринимающие элементы давления
Давление вызывают движущиеся молекулы газа или жидкости. Давление — число единиц силы, действующей на единицу площади.
В системе СИ за единицу давления, называемую «Паскаль» (Па), принято давление, которое оказывает сила в 1 Н, действующая на поверхность в 1 м2.
В технике часто применяют «внесистемные» единицы, такие, как техническая атмосфера (кгс/см2), миллиметры ртутного столба, определяемые при температуре в градусах Цельсия и нормальном ускорении и др.
При измерении различают абсолютное, избыточное давление и вакуум. Абсолютное давление (Ра) отсч.итывается от абсолютного нуля (абсолютное разрежение), избыточное (Ри) — от атмосферного давления (Рат). Вакуум измеряют аналогично.
Устройства, предназначенные для измерения давления, можно разделить на две группы.
Устройства с упругими воспринимающими элементами1
(рис. 18, а—г). Измерение давления производится упругими воспринимающими элементами (рис. 18), к которым относят: мембраны (см. рис. 18, а), сильфоны (см. рис. 18, б), трубчатые или геликоидальные пружины (см. рис. 18, в, г).
Нис. 18. Воспринимающие элементы давления:
а — мембраны; б — сильфоны; в — трубчатые пружины; г — геликоидальные пружины;
д — пьезодатчик; е — магнитно-стрикционный датчик
Перемещение центра мембраны или свободного сильфона, а также угол раскручивания свободного конца трубчатой пружины зависят от изменения давления АР, что можно выразить уравнением h = КU Р, где КU — коэффициент усиления мембраны или сильфона или трубчатой пружины.
Деформация упругих элементов преобразуется в измерительный сигнал с помощью преобразователя (емкостного, тензометриче-ского, индуктивного, реостатного и др.).
Устройства с воспринимающими элементами, изменяющими физические свойства под действием давления (рис. 18, д, е). К ним относят устройства, преобразователи которых имеют принцип действия: пьезоэлектрический, магнитно-стрикционный, ионизационный и др.
В данной группе устройств давление может непосредственно воздействовать на воспринимающий элемент, изменяя его свойства. Большинство устройств имеют мембраны, опирающиеся на чувствительный элемент (см. рис. 18, д). Давление от мембраны 1 передается с помощью стержня 2 на два измерительных пьезоэлемента 4.
Одновременно стержень 2 опирается на модулирующий пьезоэле-мент 3. Электроды пьезоэлемента подсоединены к сети переменного тока 220 В при частоте 50 Гц. Выход устройства подсоединяется к прибору. При действии переменного напряжения пьезоэлемент 3 подвергается деформации растяжения и сжатия, под действием усилия, оказываемого мембраной / на измерительные пьезоэле-менты 4.
На рис. 18, е представлена схема компенсационного устройства с магнитно-стрикционным преобразователем. Сердечник 1 является чувствительным элементом, выполненным из никель-цинкового феррита. Мембрана 2 передает давление сердечнику, у которого меняется магнитная проницаемость, а следовательно, и ЭДС Е1. Сердечник 4 и обмотки 3 создают компенсационную ЭДС Е2- Схема включения дифференциальная. Напряжение Uвых = f (E2—E1, но Е2—Е1 = f ( Р), тогда Uвых = f ( Р).