Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ползик автоматика ТДП.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
14.13 Mб
Скачать

§ 59. Системы управления автоматами на базе механических программоносителей

При современных темпах развития техники и быстро сменяю­щихся объектах производства проблема мобильности требует раз­решения противоречий между массовостью и быстросменностью, количеством и качеством. Для этого необходимо, чтобы оборудова-

ние обеспечивало большую гибкость (переналаживаемость) при высокой производительности. В наибольшей степени этим усло­виям удовлетворяет агрегатированное оборудование.

Агрегатирование — создание деревообрабатывающих станков путем сочетания нормализованных и стандартных узлов и деталей. Деревообрабатывающие станки, скомпонованные из нормализованных узлов (в первую очередь из агрегатных силовых головок), получили название агрегатных. Они в основном бывают многопозиционными.

Агрегатные станки выполняют с последовательным, параллель­ным или последовательно-параллельным агрегатированием.

К нормализованным узлам относят силовые головки, столы, приводы, гидро- и пневмопанели, суппорты, гидроцилиндры, пульты управления.

По степени механизации головки подразделяют на неподвиж­ные и с автоматической подачей в одном или нескольких направле­ниях. В качестве привода подачи используют механические, элек­трические, гидравлические, пневматические и комбинированные.

Комплекс силовых головок разработан институтом ВНИИДМаш и объясняет следующие группы нормализованных узлов: а) головки сверлильные пневматические пинольные АГ1-1, АГ1-2, АГ1-3; б) головки сверлильно-пазовальные пинольные АГ1-4; в) головки для пиления фрезерования на салазках АГ2-1, АГ2-2, АГ2-3; г) го­ловки на салазках с механизированной подачей суппорта сверлиль­ные АГ2-4А, АГ2-4, АГ2-5; для пиления и фрезерования АГ2-6, АГ2-7, АГ2-8; д) головки фрезерно-полировальные с качающимся шпинделем АГ4-1; АГ4-2, АГ2-3; е) головки вертикально-фрезерные АГ3-2, долбежные АГ5-1, цепнодолбежные АГ5-2 и др.

Нормализованные силовые головки обеспечены бесступенча­тым регулированием скорости подачи и системой автоматизации цикла.

Системы управления упорами. Освободить человека от выпол­нения функций ручного управления и большого числа вспомога­тельных работ возможно созданием механизмов и систем управле­ния. Для этих целей технологическое оборудование оснащается средствами автоматизации, которые обеспечивают выполнение стан­ком несложных программ обработки.

Способ задания программы определяет степень постоянства действия сигналов, уровень централизации.

В системе управления упорами программу задают, используя неподвижные упоры, воздействующие на конечные выключатели, которые при помощи электрических, гидравлических или пневма­тических сигналов передают команды соответствующим приводам исполнительных механизмов.

В автоматических линиях система упоров используется для путевого управления работой смежных агрегатов, для подачи ко­манд от одного агрегата к другому, для управления циклами си­ловых головок, рабочих столов, для систем блокировки и сигна­лизации.

Простота смены программы создает известную мобильность и технологическую гибкость системы управления. Рассмотрим ти­повой вариант управления на примере сверлильно-пазовальной силовой пинольной головки АГ1-3 (рис. 119).

Головка имеет электропривод шпинделя, пневмогидравличе-ский механизм подачи. Схема обеспечивает бесступенчатое регули­рование скорости и ускоренный обратный ход. Управление проис­ходит с помощью упоров 3, 4 и конечных выключателей SQ1 и SQ2.

Рис. 120. Копировальные устройства:

а — объемно-копировальный станок; б — функциональная схема следящей копировальной системы

Регулятор скорости состоит из заполненного маслом цилиндра 8, поршня 7, игольчатого дросселя 5, плунжера 9, головки 6. При рабочем ходе воздух из емкости 1 под давлением подается в верх­нюю полость пневмоцилиндра 2 и поршни 9, 7 перемещаются. Го­ловка 6 плотно прижата к торцу поршня 7, и масло вытесняется из одной полости в другую через дроссель 5, с помощью которого можно изменять скорость подачи рабочего хода.

Системы управления копирами. Копировальные системы обла­дают высокой мобильностью, перспективны и делятся на две основ­ные группы: 1) копир выполняет функцию управления перемеще­нием инструмента и функцию механизма подачи инструмента — силовые копировальные системы; 2) копир выполняет только функ­ции управления.

Рис. 121. Кинематическая схема полуавтомата СвСА:

/, 2, 3 — пуансоны; 4 — подача клея; 5, 7,8,9кулачки; 6, 11 — пружины; 10 — рас­пределительный вал; 12 — муфта; 13 — шкив; 14 — насос; 15 — электродвигатель

Копировальные системы первой группы конструктивно просты и выполняются с жесткой связью между копиром 1 и инструмен­том 2 (рис. 120, а), из-за небольших сил резания при обработке изделий из древесины применяются в деревообработке в основном в одношпиндельном и многошпиндельном исполнениях.

В машиностроении, наоборот, более широко применяют системы второй группы, где инструмент имеет силовой привод, управляе­мый следящей системой (рис. 120, б). Копировальная головка 4, получающая от щупа 5 сигналы рассогласования, преобразует их в командные импульсы 3 силовому следящему двигателю 2 с инстру­ментом 1. Задающая подача s3 имеет постоянные направление и скорость. Направление и скорость следящей подачи зависят от профиля копира 6, имеющего угол подъема . Соотношение задаю­щей s3 и следящей sсл подач обеспечивает значение и направление

результирующей подачи speз рабочего инструмента относительно обрабатываемой детали также под углом .

В практике построения копировальных систем применяют гид­равлические системы, где копир воздействует на золотник, и фо­токопировальные системы, работающие по чертежу.

Системы управления распределительным валом. Если копиры-кулачки жестко расположить на одном валу, то при вращении вала с копирами все движения, входящие в цикл, будут макси­мально синхронизированы. Такие системы получили название си-

Рис. 122. Циклограмма работы полуавтомата СаСА:

1 — опускание башмака; 2 — опускание сверлильного шпинделя, = 47°; 3 — высвер­ливание сучка, =8°; 4 — выстой, = 18°; 5 — подъем, = 17°; 6 — опускание фре­зерного шпинделя, 18°; 7 — выфрезерование пробочки, =14°; 8 — опускание шпинделя и пробкодержателя, = 13°; 9 — подъем фрезерного шпинделя, =13°; 10 — выстой, = 6°; 11 — дополнительный прижим пробки толкателя, = 21°; 12 — подъем толкателя, = 14°; 13 — выстой механизма, = 55°.

стем управления распределительным валом. Они позволяют путем построения циклограмм заранее спроектировать и рассчитать ра­бочий цикл, обеспечив строгое выполнение заданного технологиче­ского процесса обработки. Такие системы получили широкое рас­пространение в автоматах различного технологического назначе­ния для крупносерийного и массового производства изделий. При­мером применения подобной системы может служить полуавтомат СвСА для высверливания и заделки сучков (рис. 121).

Последовательность работы задает распределительный вал. При включении кулачковой муфты станок переходит в автоматический режим, выполняя операции, предусмотренные циклом и характе­ризуемые циклограммой (рис. 122).

Применение этих систем позволяет автоматизировать рабочие холостые движения с максимальной синхронизацией, высокой на­дежностью, минимальным временем холостых ходов.