
- •Глава 1
- •§ 1. Основные понятия, определения и классификация систем автоматики
- •§ 2. Классификация элементов систем автоматического управления
- •§ 3. Принципы схемного отображения технологических объектов, процессов и систем управления
- •Глава 2 воспринимающие элементы систем автоматики
- •§ 4. Воспринимающие элементы перемещений
- •§ 5. Датчики усилий
- •§ 6. Датчики частоты вращения
- •§ 7. Датчики углов поворота
- •§ 8. Воспринимающие элементы температур
- •§ 9. Воспринимающие элементы давления
- •§ 10. Воспринимающие элементы расхода и уровня
- •Глава 3
- •§ 12. Усилительные элементы
- •§ 13. Вычислительные и логические элементы
- •§ 14. Исполнительные устройства с электродвигателями
- •§ 15. Исполнительные механизмы с электромагнитными
- •§ 16. Пневматические и гидравлические исполнительные механизмы
- •§ 17. Регулирующие органы и их характеристики
- •Глава 4 системы автоматического контроля
- •§ 18. Основные понятия об измерениях и средствах измерений
- •§ 19. Структура и назначение систем контроля
- •§ 20. Измерительные схемы и вторичные приборы
- •§ 21. Преобразование сигналов и системы передачи показаний на расстояние
- •§ 22. Автоматический учет сырья
- •§ 23. Автоматический контроль линейных размеров
- •§ 24. Автоматический контроль качества поверхности
- •§ 25. Автоматический контроль температуры
- •3. Приборы для измерения температуры табл
- •§ 26. Автоматический контроль уровня
- •§ 27. Автоматический контроль влажности
- •§ 28. Автоматический контроль расхода и давления
- •§ 29. Автоматический контроль работы оборудования
- •§ 30. Информационно-измерительные системы
- •Глава 5
- •§ 32. Структурные схемы и их преобразование
- •§ 33. Классификация звеньев по динамическим свойствам
- •§ 34. Характеристики автоматических систем управления
- •§ 35. Инженерные методы расчета и выбора регуляторов
- •§ 36. Элементы построения оптимальных систем управления
- •Глава 6
- •§ 37. Основные понятия и определения
- •§ 38. Основные формализованные языки описания логических систем управления
- •§ 39. Синтез однотактных систем логического управления
- •6. Таблица состояний
- •Глава 7
- •§ 41.ГПреимущества автоматизированных производств
- •§ 42. Оптимизационная математическая модель производства
- •§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
- •§ 44. Влияние надежности на эффективность автоматизации деревообрабатывающих производств
- •Глава 8
- •§ 45. Характеристика производственных процессов и производств
- •§ 48. Регулирование потока и запаса материала
- •§ 49. Технологические основы управления дискретными производственными процессами
- •Глава 9
- •§ 50. Взаимосвязь параметров при механической обработке древесины
- •§ 51. Системы автоматического управления режимами обработки деталей
- •§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
- •§ 53. Особенности динамики систем стабилизации частоты вращения (режимов обработки)
- •§ 54. Оптимизация динамических свойств автоматических систем управления
- •Глава 10
- •§ 55. Типовые блокировочные связи в системах управления
- •7. Основные виды межузловых связей
- •§ 56. Системы управления станками пиления древесины
- •§ 57. Системы управления станками строгальной и фрезерной групп
- •§ 58. Системы управления шипорезными, сверлильными, долбежными и лущильными станками
- •§ 59. Системы управления автоматами на базе механических программоносителей
- •§ 60. Системы программного управления
- •§ 61. Самонастраивающиеся системы управления
- •§ 62. Микропроцессоры и микроэвм в системах управления
- •9. Символьное обозначение команд
- •§ 63. Основные сведения о манипуляторах, роботах и системах управления ими
- •Глава 11
- •§ 64. Классификация станочных линий
- •§ 65. Структура автоматических линий
- •§ 66. Эффективность функционирования автоматических
- •§ 67. Линии раскроя плит
- •§ 68. Линии облицовывания плит
- •§ 69. Линии брусковых деталей
- •§ 70. Линии повторной обработки щитовых деталей
- •§ 71. Линии отделки
- •§ 72. Линии сортировки
- •Глава 12
- •§ 73. Управление загрузчиками автоматических
- •§ 74. Схемы управления разгрузчиками автоматических линий
- •§ 75. Транспортно-ориентирующие устройства автоматических линий и системы управления ими
- •§ 76. Устройства автоматического позиционирования
- •Глава 13
- •§ 77. Характеристика складов деталей и комплектующих изделий
- •§ 78. Системы управления складами
- •§ 79. Автоматизация транспортных работ
- •Глава 14
- •§ 80. Управление процессами сушки в лесосушильных камерах
- •§ 81. Управление процессом сушки в конвейерных сушилках
- •§ 82. Управление процессом сушки в барабанных сушилках
- •§ 83. Управление режимом горячего прессования
- •§ 84. Управление процессами пропарки древесины
§ 5. Датчики усилий
Датчики усилий и давлений (рис. 14) формируют управляющие сигналы в зависимости от сил, создаваемых в рабочих органах. Характерным электромеханическим датчиком можно считать кулачковую муфту 1 со скошенными зубьями (см. рис. 14,а). Одна из полумуфт размещается на валу со скользящей шпонкой
Рис. 14. Датчики усилий:
а — электромеханический; б — реле давления; в — сливной клапан; г — тензометриче-ский преобразователь; д — схема наклейки и включения тензометрического преобразо-
вателя
и прижимается ко второй половине пружиной 3. Если на валу возникают силы, превышающие предельные, муфта сдвигается и че-pез рычаг 2 воздействует на конечный выключатель SQ, вызывая eго срабатывание. Сигнал поступает в схему управления.
Реле давления (см. рис. 14, б) контролирует изменение нагрузки в рабочих органах станка по изменению давления непосредственно в гидросистеме. Выполняется с электроконтактным выходом или в виде сливного клапана (см. рис. 14, в). Повышение давления в полости А вызывает прогиб мембраны 9, рычаг 2, сжимая пружину 3, поворачивается и нажимает на шток конечного выключателя 5, вызывая его срабатывание. Регулировка силы срабатывания выполняется винтом 4.
Тензометрические преобразователи представляют собой безынерционные устройства, которые используют для преобразования малых деформаций (порядка сотых и тысячных долей миллиметра) в электрический сигнал. Тензопреобразо-ватель изготавливают из константановой проволоки диаметром 0,02—0,05 мм. Проволоку 6 приклеивают змейкой на полоску тонкой бумаги 7 и сверху наклеивают второй слой бумаги (см. рис. 14, г). Тензоэлемент приклеивают к поверхности деформируемой детали 8 таким образом, чтобы прямолинейные участки проволоки растягивались или сжимались в соответствии с деформацией элемента (см. схему на рис. 14, д).
§ 6. Датчики частоты вращения
Тахогенераторы как датчики позволяют сформировать управляющие сигналы в функции скорости. Они применяются для измерения частоты вращения и относятся к группе электрических
Рис. 15. Датчики частоты вращения:
а — тахогенератор постоянного тока; б — тахогенератор переменного тока; в — реле
контроля скорости
генераторов.
Тахогенераторы постоянного тока могут
иметь обмотки возбуждения или
постоянные магниты (рис. 15, а).
При
вращении
напряжение на зажимах якоря пропорционально
частоте вращения
вала якоря Е
= UЯКеФ
Учитывая,
что магнитный
поток Ф=const, можно записать UTГ = UЯ = ФКе . Обозна чим КеФ= КTГ. Тогда UTГ = КTГ .
Тахогенераторы переменного тока изготавливают синхронными и асинхронными. Наиболее широкое применение получили асинхронные тахогенераторы (рис. 15, б). Они имеют обмотку возбуждения ОВ и выходную обмотку W. ЭДС тахогенератора пропорциональна частоте вращения Е = KUb .
Реле контроля скорости (рис. 15, в) состоит из постоянного магнита 3, находящегося на валу. Кольцо с коротко-замкнутой обмоткой 4 расположено на другом валу, связанном с толкателем 1, который воздействует на контактные группы К1, К2. Вал с толкателем и короткозамкнутой обмоткой возвращается в исходное положение под действием пружины 2. При вращении вала с магнитом в короткозамкнутой обмотке наводится ЭДС ЕКЗ и протекает ток IКЗ, взаимодействующий с магнитным полем магнита. Создается вращающий момент, под действием которого кольцо с толкателем поворачивается, толкатель воздействует на контакты К1 и К2, вызывая их срабатывание.