
- •Глава 1
- •§ 1. Основные понятия, определения и классификация систем автоматики
- •§ 2. Классификация элементов систем автоматического управления
- •§ 3. Принципы схемного отображения технологических объектов, процессов и систем управления
- •Глава 2 воспринимающие элементы систем автоматики
- •§ 4. Воспринимающие элементы перемещений
- •§ 5. Датчики усилий
- •§ 6. Датчики частоты вращения
- •§ 7. Датчики углов поворота
- •§ 8. Воспринимающие элементы температур
- •§ 9. Воспринимающие элементы давления
- •§ 10. Воспринимающие элементы расхода и уровня
- •Глава 3
- •§ 12. Усилительные элементы
- •§ 13. Вычислительные и логические элементы
- •§ 14. Исполнительные устройства с электродвигателями
- •§ 15. Исполнительные механизмы с электромагнитными
- •§ 16. Пневматические и гидравлические исполнительные механизмы
- •§ 17. Регулирующие органы и их характеристики
- •Глава 4 системы автоматического контроля
- •§ 18. Основные понятия об измерениях и средствах измерений
- •§ 19. Структура и назначение систем контроля
- •§ 20. Измерительные схемы и вторичные приборы
- •§ 21. Преобразование сигналов и системы передачи показаний на расстояние
- •§ 22. Автоматический учет сырья
- •§ 23. Автоматический контроль линейных размеров
- •§ 24. Автоматический контроль качества поверхности
- •§ 25. Автоматический контроль температуры
- •3. Приборы для измерения температуры табл
- •§ 26. Автоматический контроль уровня
- •§ 27. Автоматический контроль влажности
- •§ 28. Автоматический контроль расхода и давления
- •§ 29. Автоматический контроль работы оборудования
- •§ 30. Информационно-измерительные системы
- •Глава 5
- •§ 32. Структурные схемы и их преобразование
- •§ 33. Классификация звеньев по динамическим свойствам
- •§ 34. Характеристики автоматических систем управления
- •§ 35. Инженерные методы расчета и выбора регуляторов
- •§ 36. Элементы построения оптимальных систем управления
- •Глава 6
- •§ 37. Основные понятия и определения
- •§ 38. Основные формализованные языки описания логических систем управления
- •§ 39. Синтез однотактных систем логического управления
- •6. Таблица состояний
- •Глава 7
- •§ 41.ГПреимущества автоматизированных производств
- •§ 42. Оптимизационная математическая модель производства
- •§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
- •§ 44. Влияние надежности на эффективность автоматизации деревообрабатывающих производств
- •Глава 8
- •§ 45. Характеристика производственных процессов и производств
- •§ 48. Регулирование потока и запаса материала
- •§ 49. Технологические основы управления дискретными производственными процессами
- •Глава 9
- •§ 50. Взаимосвязь параметров при механической обработке древесины
- •§ 51. Системы автоматического управления режимами обработки деталей
- •§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
- •§ 53. Особенности динамики систем стабилизации частоты вращения (режимов обработки)
- •§ 54. Оптимизация динамических свойств автоматических систем управления
- •Глава 10
- •§ 55. Типовые блокировочные связи в системах управления
- •7. Основные виды межузловых связей
- •§ 56. Системы управления станками пиления древесины
- •§ 57. Системы управления станками строгальной и фрезерной групп
- •§ 58. Системы управления шипорезными, сверлильными, долбежными и лущильными станками
- •§ 59. Системы управления автоматами на базе механических программоносителей
- •§ 60. Системы программного управления
- •§ 61. Самонастраивающиеся системы управления
- •§ 62. Микропроцессоры и микроэвм в системах управления
- •9. Символьное обозначение команд
- •§ 63. Основные сведения о манипуляторах, роботах и системах управления ими
- •Глава 11
- •§ 64. Классификация станочных линий
- •§ 65. Структура автоматических линий
- •§ 66. Эффективность функционирования автоматических
- •§ 67. Линии раскроя плит
- •§ 68. Линии облицовывания плит
- •§ 69. Линии брусковых деталей
- •§ 70. Линии повторной обработки щитовых деталей
- •§ 71. Линии отделки
- •§ 72. Линии сортировки
- •Глава 12
- •§ 73. Управление загрузчиками автоматических
- •§ 74. Схемы управления разгрузчиками автоматических линий
- •§ 75. Транспортно-ориентирующие устройства автоматических линий и системы управления ими
- •§ 76. Устройства автоматического позиционирования
- •Глава 13
- •§ 77. Характеристика складов деталей и комплектующих изделий
- •§ 78. Системы управления складами
- •§ 79. Автоматизация транспортных работ
- •Глава 14
- •§ 80. Управление процессами сушки в лесосушильных камерах
- •§ 81. Управление процессом сушки в конвейерных сушилках
- •§ 82. Управление процессом сушки в барабанных сушилках
- •§ 83. Управление режимом горячего прессования
- •§ 84. Управление процессами пропарки древесины
§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
Системы стабилизации применяют при больших диапазонах регулирования скорости приводов, а также для приводов технологического оборудования, требующего при сравнительно небольшом диапазоне регулирования точного поддержания скорости, мощности резания и других параметров рабочего процесса. Эти системы, как правило, замкнутые. Точность систем определяется перепадом скоростей при изменении момента сопротивления и других возмущений в заданных пределах, т. е. жесткостью или статизмом механических характеристик.
В зависимости от требований к точности стабилизации режима обработки деталей и диапазона регулирования D= max/ min применяют различные варианты обратных связей.
Учитывая, что при определенных допущениях любая система автоматического регулирования может быть представлена эквивалентной системой с двигателем постоянного тока, рассмотрим только варианты электроприводов постоянного тока.
В замкнутой системе статизм s3 характеристик или перепад скорости будет наибольшим при низких скоростях:
Увеличить диапазон регулирования при заданном статизме s3 можно, уменьшая перепад скорости с. 3.
Схема стабилизации напряжения питания (частоты вращения) двигателя (рис. 106, а) содержит преобразователь П с усилителем, датчик напряжения ДН, сигнал которого Uo.с. н поступает на узел сравнения, где электрически суммируется с задающим сигналом Uз. Сигналы могут суммироваться электромагнитно, если требуется гальваническая развязка соответствующих цепей. Допускаем линейную зависимость «вход-выход» преобразователя.
Уравнения электрического равновесия запишутся:
ское сложение сигналов. Уравнения равновесия записываются:
где kт = Uо. с т/Iя — коэффициент обратной связи по току; Rя = =Rп + Rя.д + Rд.т; Rд.т —сопротивление датчика тока, если он включен непосредственно в цепь якоря двигателя.
Статическую скоростную характеристику получим, решив уравнения (79):
где Uy — напряжение управления на входе усилителя, kn = — Eп/Uy. п — коэффициент усилия преобразователя, Uy п = Uy; kн = Uo.с. н/Uя — коэффициент обратной связи по напряжению; Еп — ЭДС преобразователя; Rn — сопротивление силовой цепи преобразователя. Из (78) находим:
Падение напряжения Uя.3 при одинаковой нагрузке в (1 + kнkn) раз меньше по сравнению с падением напряжения Uя р в разомкнутой системе. Следовательно, жесткость характеристики преобразователя повышается, и тем самым обеспечивается стабильность напряжения Uя и частоты вращения двигателя.
Заданный статизм характеристики зависит от kн, kn и определяется по формуле
Требуемый коэффициент усиления
Статизм характеристики при изменении диапазона регулирования можно определить уравнением
Статические характеристики системы П—Д постоянного тока.
Рассмотрим случай с положительной обратной связью по току. На рис. 106, б рассматривается электриче-
В зависимости от kT теоретически можно получить любую жесткость статической характеристики.
Положительная обратная связь по току зависит от скорости со. Ее используют как дополнительную к обратной связи по напряжению или по скорости.
Для случая сотрицательной обратной связью по частоте вращения двигателя. В качестве датчика скорости (рис. 106, в) может быть использован тахогенератор или тахометрический мост. При Ф = Фн = const исходные уравнения записываются:
где ke = Uo.c.с/ — коэффициент обратной связи по скорости.
Из уравнений (80) получим уравнение скоростной характеристики
Из полученного уравнения видно, что жесткость статической характеристики повышается по сравнению с характеристикой разомкнутой системы в (1 + keknkд) раз.
При заданном диапазоне регулирования скорости и статизме s = з/ о min требуемый коэффициент усиления
kT = (Dsp/s3)— 1.
Тогда требуемый коэффициент обратной связи по скорости
kc= kT/knkд
Рассмотрим случай с отрицательной обратной связью по напряжению и положительной связью по току. На схеме рис. 107, а представлено электромагнитное сложение сигналов с использованием усилителя с тремя обмотками управления. При этом исходные уравнения записываются как
где Fy — результирующая МДС управления преобразователя; F3, Fo.c.h, Fo.c.t — МДС обмоток управления задающей (ОУ1), обратной связи по напряжению (ОУ2), обратной связи по току (ОУ3); Iу1, Iу2, Iу3 и У1, у2, у3 — токи и число витков обмоток управления;
Из решения системы уравнений (81) определится статическая скоростная характеристика привода
При соответствующем выборе коэффициентов обратных связей можно получить жесткость статической характеристики, аналогичную жесткости характеристики системы с обратной связью по скорости.
Для случая с отрицательной обратной связью по скорости и положительной — по току. Схема, изображенная на рис. 107, б, обеспечивает электромагнитное суммирование сигналов, и исходные уравнения запишутся:
где kc = Fo.c.c/ — коэффициент обратной связи по скорости.
Решив систему уравнений (82), получим уравнение скоростной характеристики
Данная схема применяется при больших диапазонах регулирования D, когда стабильность скорости невозможно обеспечить одной обратной связью по скорости.
Рассмотренные варианты являются основными и не охватывают более сложных решений при построении систем стабилизации скорости резания или режимов обработки, знание методов расчета
систем стабилизации скорости позволяет решать и другие задачи по стабилизации технологических параметров. Используя уравнения данного параграфа, можно определить параметры элементов и выбрать их по техническим характеристикам.
Ограничение уровней сигналов управления в системах автоматики. Общий коэффициент усиления k системы выбирают так, чтобы обеспечить необходимый статизм характеристик для выполнения требований технологического процесса. При этом в переход-
ных процессах при пуске и резких колебаниях возмущающих воздействий возможно положение, при котором результирующий сигнал управления кратковременно превосходит установившееся значение в (1 + k) раз, что недопустимо для преобразователей. Например, для тиристорных преобразователей результирующий сигнал управления не должен быть больше значений, при которых угол регулирования <0 (нереверсивный) или min< < max (ревер-
Рис. 108. Типовые схемы ограничения уровня сигналов управления: а — ограничения в цепи обратной связи; б — шунтирование входа преобразователя
сивный). Поэтому применяют различные способы ограничения сигналов управления в системах автоматики (рис. 108):
обратные связи с «отсечкой», когда в цепь обратной связи вводится полупроводниковый диод или стабилитрон (рис. 108, а);
шунтирование входа преобразователя стабилитроном или использованием «насыщения» промежуточного усилителя, (рис. 108, б).
Применение «отсечек» позволяет ограничить действие обратных связей при определенных значениях отклонения регулируемой величины от заданной области.