
- •Глава 1
- •§ 1. Основные понятия, определения и классификация систем автоматики
- •§ 2. Классификация элементов систем автоматического управления
- •§ 3. Принципы схемного отображения технологических объектов, процессов и систем управления
- •Глава 2 воспринимающие элементы систем автоматики
- •§ 4. Воспринимающие элементы перемещений
- •§ 5. Датчики усилий
- •§ 6. Датчики частоты вращения
- •§ 7. Датчики углов поворота
- •§ 8. Воспринимающие элементы температур
- •§ 9. Воспринимающие элементы давления
- •§ 10. Воспринимающие элементы расхода и уровня
- •Глава 3
- •§ 12. Усилительные элементы
- •§ 13. Вычислительные и логические элементы
- •§ 14. Исполнительные устройства с электродвигателями
- •§ 15. Исполнительные механизмы с электромагнитными
- •§ 16. Пневматические и гидравлические исполнительные механизмы
- •§ 17. Регулирующие органы и их характеристики
- •Глава 4 системы автоматического контроля
- •§ 18. Основные понятия об измерениях и средствах измерений
- •§ 19. Структура и назначение систем контроля
- •§ 20. Измерительные схемы и вторичные приборы
- •§ 21. Преобразование сигналов и системы передачи показаний на расстояние
- •§ 22. Автоматический учет сырья
- •§ 23. Автоматический контроль линейных размеров
- •§ 24. Автоматический контроль качества поверхности
- •§ 25. Автоматический контроль температуры
- •3. Приборы для измерения температуры табл
- •§ 26. Автоматический контроль уровня
- •§ 27. Автоматический контроль влажности
- •§ 28. Автоматический контроль расхода и давления
- •§ 29. Автоматический контроль работы оборудования
- •§ 30. Информационно-измерительные системы
- •Глава 5
- •§ 32. Структурные схемы и их преобразование
- •§ 33. Классификация звеньев по динамическим свойствам
- •§ 34. Характеристики автоматических систем управления
- •§ 35. Инженерные методы расчета и выбора регуляторов
- •§ 36. Элементы построения оптимальных систем управления
- •Глава 6
- •§ 37. Основные понятия и определения
- •§ 38. Основные формализованные языки описания логических систем управления
- •§ 39. Синтез однотактных систем логического управления
- •6. Таблица состояний
- •Глава 7
- •§ 41.ГПреимущества автоматизированных производств
- •§ 42. Оптимизационная математическая модель производства
- •§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
- •§ 44. Влияние надежности на эффективность автоматизации деревообрабатывающих производств
- •Глава 8
- •§ 45. Характеристика производственных процессов и производств
- •§ 48. Регулирование потока и запаса материала
- •§ 49. Технологические основы управления дискретными производственными процессами
- •Глава 9
- •§ 50. Взаимосвязь параметров при механической обработке древесины
- •§ 51. Системы автоматического управления режимами обработки деталей
- •§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
- •§ 53. Особенности динамики систем стабилизации частоты вращения (режимов обработки)
- •§ 54. Оптимизация динамических свойств автоматических систем управления
- •Глава 10
- •§ 55. Типовые блокировочные связи в системах управления
- •7. Основные виды межузловых связей
- •§ 56. Системы управления станками пиления древесины
- •§ 57. Системы управления станками строгальной и фрезерной групп
- •§ 58. Системы управления шипорезными, сверлильными, долбежными и лущильными станками
- •§ 59. Системы управления автоматами на базе механических программоносителей
- •§ 60. Системы программного управления
- •§ 61. Самонастраивающиеся системы управления
- •§ 62. Микропроцессоры и микроэвм в системах управления
- •9. Символьное обозначение команд
- •§ 63. Основные сведения о манипуляторах, роботах и системах управления ими
- •Глава 11
- •§ 64. Классификация станочных линий
- •§ 65. Структура автоматических линий
- •§ 66. Эффективность функционирования автоматических
- •§ 67. Линии раскроя плит
- •§ 68. Линии облицовывания плит
- •§ 69. Линии брусковых деталей
- •§ 70. Линии повторной обработки щитовых деталей
- •§ 71. Линии отделки
- •§ 72. Линии сортировки
- •Глава 12
- •§ 73. Управление загрузчиками автоматических
- •§ 74. Схемы управления разгрузчиками автоматических линий
- •§ 75. Транспортно-ориентирующие устройства автоматических линий и системы управления ими
- •§ 76. Устройства автоматического позиционирования
- •Глава 13
- •§ 77. Характеристика складов деталей и комплектующих изделий
- •§ 78. Системы управления складами
- •§ 79. Автоматизация транспортных работ
- •Глава 14
- •§ 80. Управление процессами сушки в лесосушильных камерах
- •§ 81. Управление процессом сушки в конвейерных сушилках
- •§ 82. Управление процессом сушки в барабанных сушилках
- •§ 83. Управление режимом горячего прессования
- •§ 84. Управление процессами пропарки древесины
Глава 9
АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ ПРОЦЕССАМИ РЕЗАНИЯ ДРЕВЕСИНЫ
§ 50. Взаимосвязь параметров при механической обработке древесины
Деревообрабатывающий станок — это не только комплекс элементов и устройств, рассматриваемых в конструктивном аспекте, но и некоторая технологическая система, где протекают сложные
процессы, характеризуемые рядом физических величин, весомость которых определяется как видом и интенсивностью технологической обработки, так и конструктивными особенностями системы станок— приспособление — инструмент — деталь (СПИД). Все величины, описывающие состояние системы, взаимосвязаны, причем количественные связи могут быть определены физическими закономерностями, которые действуют в реальной системе СПИД, обладающей конечной жесткостью элементов, коэффициентами трения и т. д.
Точность и производительность деревообрабатывающих станков определяют эффективность производства и качество выпускаемой продукции. Поэтому проблема повышения точности и производительности всегда была основной для конструкторов. Современные деревообрабатывающие станки становятся все более сложными и совершенными, оснащенными различными устройствами и системами автоматизации.
Интенсификация работы оборудования — увеличение его производительности—органически связана с увеличением надежности (см. § 44). Процессы механической обработки древесины связаны с энергозатратами, расходом древесного сырья, затратами на инструмент и уход за ним, на оборудование и его обслуживание, на оплату человеческого труда и т. д.
Профессором А. А. Пижуриным [28, 29 ] обосновано, что процессы механической обработки древесины и древесных материалов подвержены влиянию различных факторов, которые можно разделить на следующие группы:
характеризующие объект обработки (породу, влажность, плотность, механические свойства, температуру древесины);
характеризующие инструмент (материал, параметры заточки, степень затупления, величина развода или плющения зубьев, число режущих лезвий, диаметр инструмента или сырья, точность инструмента и др.)
характеризующие процесс механической обработки (размеры стружки, скорости резания и подачи, углы резания, усилия резания и др.);
технико-экономические (себестоимость, производительность обработки и др.).
Математическое описание процессов механической обработки древесины. Это описание состоит в выражении величин yk, характеризующих процесс, в виде функциональной зависимости от различных переменных факторов хi. Зависимости ук = f (xi) для многих процессов механической обработки древесины можно классифицировать как:
силовые — по условиям резания Fp = f (хi) и подачи Fn = = f (хi), по мощностям резания Рр = f (хi) и подачи Рп = f (хi);
количественные — по неровностям поверхностей деталей Рz mах = f (хi); по мощности и ворсистости поверхности W = f (хi); по точности размерообразований = f (хi); по предельной волни стости k = f (хi); по поперечной волнистости = f (хi);
3) технико-экономические — по себестоимости обработки с = = f (хi), по производительности обработки П = f (хi).
По критерию максимальной производительности:
Построение математических моделей занимает значительное место в общем объеме работ по формированию алгоритмов оптимального протекания процессов. Математическая модель должна отражать наиболее существенные черты технологического процесса и позволять последующие исследования на модели и оптимизацию процесса.
Оптимальное протекание процесса определяет целевая функция, которая является критерием оптимизации в пределах заданной области технически допустимых значений технологических параметров. Они определяют область ограничений.
Математические модели и оптимальные задачи [27, 28] могут рассматриваться в нескольких вариантах, основными из которых являются производственный и проектный.
Задачи производственного и проектного вариантов могут решаться по критериям минимальной себестоимости или максимальной производительности.
При решении оптимальных задач производственного варианта математические модели содержат количественные, конструктивно-технологические и технико-экономические ограничения конкретного производственного объекта (участка или оборудования). Во многих случаях ограничениями могут быть производительности соседних участков или необходимость иметь запас по производительности.
По критерию максимальной производительности:
В общем виде математические модели [27, 28] механической обработки древесины могут быть выражены целевыми функциями и ограничениями.
По критерию минимальной себестоимости:
При решении оптимальных задач проектного варианта принимаются соответствующие ограничения, другие ограничения конструктор рассчитывает, исходя из полученных оптимальных режимов
По критерию минимальной себестоимости:
где Мх — множество допустимых оптимальных решений; М0х — ограничения, накладываемые множеством и удовлетворяющие технологическим ограничениям вида fi(х) b, i = 1, . . . , т; КЧ, КТН, ТЭ — конструктивно-технологические, качественные и технико-экономические ограничения.
Характеристики ограничений. Количественно ограничения формулируются следующим образом:
1. Конструктивно-технологические ограничения объединяют ограничения по мощности привода главного движения (привода механизма резания).
В общем виде для всех деревообрабатывающих станков потребная мощность резания определяется
Р = KbHu/(60 102) [кВт],
где K — удельное сопротивление резания, кГс/мм2, учитывающее вид обработки; b — ширина снимаемого слоя, мм; Н — глубина резания, мм; u — скорость подачи, м/мин.
Ограничение: Рz Рн, Рн — номинальная мощность двигателя, кВт.
Мощность привода подачи
где Ft — тяговое усиление, развиваемое механизмом подачи, Н; п — КПД механизма подачи
Pпод
Рн
или Ft
,
где — сумма сил сопротивления подачи, Н, определяемая типом механизма подачи.
Зависимость мощностей резания и подачи от параметров процесса раскрывается через усилия резания или подачи.
В группу конструктивных ограничений включают ограничения: по максимальной и минимальной скоростям вращения шпинделя
n nmax; n nmin,
по наибольшей и максимальной скорости подачи
uz(uz) umax(uz max);
u(uz) umin(uz min)
по глубине резания t Н (допуск на обработку); t tmin.
В зависимости от вида механической обработки древесины могут вводиться дополнительные ограничения, характерные для данного вида обработки. Например, для процесса шлифования вводят ограничения по температуре древесины, при пилении древесины рамными пилами — ограничения по заполнению впадин зубьев, пил, по устойчивости пил и т. д.
Рассматриваемые ограничения выражаются функциональными зависимостями от различных параметров, определяющих режим обработки.
2. Качественные ограничения выражаются в следующем виде: по шероховатости обработки
по
точности размерообразования
по
продольной волнистости
по
поперечной волнистости
по
мшистости и ворсистости
3.
Технико-экономическиеограничения,
которые при оптимизации
процессов в большинстве случаев выступают
как целевые функции
или критерии оптимальных систем
управления
C = f(xi) min; П = f(xi) max.
дачи: диапазон, плавность регулирования, стабильность, условия нагрузки и экономичность работы привода.
При вращательном движении узлов станка диапазон регулирования D = max/ min, где mах и min — максимальная и минимальная угловые скорости шпинделя, рад/с.
У станков с поступательным движением диапазон регулирования определяется требуемым диапазоном линейных скоростей D =
=v max/ v min.
При получении шпона диаметр чурака уменьшается, и для сохранения постоянной скорости резания требуется регулирование скорости привода.
Диапазон регулирования определяется предельными скоростями резания v (м/мин) и предельными диаметрами обработки d (мм)
Плавность регулирования определяется отношением двух соседних скоростей i = i / i-1, где — угловая скорость шпинделя на i-й ступени регулирования, рад/мин.
Плавность регулирования ср определяется числом интервалов между скоростями z—1 и диапазоном регулирования D
Для поступательных движений плавность регулирования
При увеличении числа скоростей в заданном диапазоне регулирования 1. Стандартные числа установлены по нормальным рядам чисел в машиностроении и чаще всего применяют значения = 1,26; 1,41; 1,58.