Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ползик автоматика ТДП.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
14.13 Mб
Скачать

Глава 2 воспринимающие элементы систем автоматики

§ 4. Воспринимающие элементы перемещений

Измерительные устройства в системах управления служат для восприятия первичной информации о состоянии объекта и преобра­зования ее в сигналы, удобные для дальнейшей переработки в сиг­налы управления.

И змерительные устройства часто представляют собой сложную информационную систему, содержащую воспринимающие эле­менты, преобразователи, анали­заторы, вычислительные устрой­ства для первичной переработки информации (см. рис. 2).

Рис. 7. Статические характеристики:

а — непрерывная; б — дискретная

Основные требования к изме­рительному устройству — точ­ность и формирование полезного сигнала с минимальными иска­жениями. Это зависит от ста-.тических и динамических ха­рактеристик и от влияния раз­личных помех.

Необходимо помнить, что точность управления не может быть выше точности измерения.

При выборе измерительных устройств необходимы следующие данные: диапазон регулируемого параметра, требуемые точность измерения, статическая и динамическая характеристики, разре­шающая способность, помехоустойчивость, мощность на выходе измерительного устройства.

Воспринимающие (измерительные) устройства. Эти устройства характеризует определенная функциональная связь между изме­нением измеряемой величины на входе и изменением выходного

сигнала. Зависимость у = f (х) называется статической ха­рактеристикой измерительного устройства, которая может быть непрерывной (рис. 7, а) или дискретной (рис. 7, б).

Рис. 8. Датчики перемещений:

a — варианты конечных выключателей; б — варианты контактных измерительных дат­чиков; в — бесконтактный конечный выключатель БВК-24

Для обеспечения постоянной чувствительности статическая ха­рактеристика у = f (х) измерительного устройства должна быть линейной или близкой к линейной на заданном интервале изме­нения х. Чувствительность — это отношение изменения выходной величины к соответствующему изменению измеряемой величины S = у/х; S = dy/dx. Порог чувствительно­сти — наименьшее изменение измеряемой величины, способное вызвать появление изменения выходного сигнала.

Для сложных измерительных устройств чувствительность оп­ределяется: при последовательном соединении Sn = S1 S2 . . . Sn =

= Si, при параллельном соединении

Преобразование линейных и угловых перемещений применяют для согласования устройств, различающихся по виду энергии на

выходе и входе. Преобразователь линейных или угловых переме­щений наряду с преобразованием сигналов может непосредственно выполнять функции соответствующего измерительного устройства.

Рис. 9. Гидравлические (a), пневматические (б) датчики перемещений и схема монтажа конечных выключателей (в)

Электроконтактные преобразователи. В таких преобразователях замыкание электрических контактов происходит в момент дости­жения изменяющейся линейной величиной (перемещением) опреде­ленного значения. Эти преобразователи делят на две группы: ко­мандные и измерительные датчики перемещений.

Командные датчики перемещений, ограничения хода узла станка объединяют группу конечных выключателей контакт-

ных типа ВК, МП и др. (рис. 8, а, б) и бесконтактных типа БВК (рис. 8, в). Пневматические и гидравлические командные датчики представлены на рис. 9.

Способы монтажа командных датчиков показаны на рис. 9, в. Воздействие на нажимные выключатели происходит при помощи подвижных упоров, кулачков и т. д. Часто командные датчики ис­пользуют как командоаппараты.

Измерительные датчики перемещений предназначены для измерения линейных размеров деталей или величины перемещения рабочих органов. При сравнении с одним предельным размером используют одноконтактные, при сравнении с двумя предельными размерами — двухконтактные и многокон­тактные датчики.

Двухконтактные и многоконтактные преобразователи линей­ных перемещений широко применяют в автоматических устройст­вах активного контроля и контрольно-сортировочных автоматах для сортировки деталей по размерам на три и более групп.

Электроконтактный преобразователь (общий случай) состоит из измерительного стержня 1, воспринимающего регулируемое перемещение, механизма преобразования и электрических контакт­ных пар 2 (см. рис. 8, 9).

Гидравлические датчики. Гидравлические датчики пути и по­ложения представляют собой управляющий гидрораспределитель поршневого или кранового типа (рис. 9, а). Движущиеся рабочие органы станка, на которых расположены кулачки или упоры, до­стигнув положения, где установлен датчик, воздействуют на шток 1, вызывая его срабатывание. При этом перемещается поршень 2 или поворачивается кран. Схема гидросоединений при этом изме­няется. Управление гидравлическими устройствами наряду с ме­ханическим может быть электромагнитным.

Пневматические датчики. Пневматические датчики аналогичны гидравлическим и выполнены в виде пневмораспределителей порш­невого или кранового типа или с мембраной и клапаном (см. рис. 9, б). Эти устройства служат для контроля размеров и ка­чества обработки поверхности изделий из древесины. Воздействие на рычаг / вызывает перемещение поршня 2.

Реостатные и потенциометрические преобразователи (датчики). Потенциометрические преобразователи (потенциометры) представ­ ляют собой переменные электрические сопротивления, величина которых зависит от положения токосъемного контакта. Они на­ ходят применение при измерении линейных и угловых перемеще­ ний (рис. 10).



Для прямолинейного перемещения движка система уравнений (рис. 10, а) будет:


Чувствительность датчика (рис. 10, б) угловых перемещений определяется выражением

где Uo — напряжение питания; Ro — полное сопротивление по­тенциометра; R1, R2— сопротивления частей, делимых движком; i1, i2, iн —токи в сопротивлениях R1, R2 и сопротивлении на­грузки RH; L — длина потенциометра; х — измеряемое переме­щение.



Решив уравнения относительно напряжения нагрузки UH, по­лучим:

Рис. 10. Потенциометрические преобразователи

Зависимость UH = f (R1) или UH = f (х) нелинейная (рис. 10, в), следовательно, для получения линейной зависимости требуется, чтобы RH R0. тогда:

Чувствительность потенциометрического преобразователя будет:

Потенциометрические датчики могут изготовляться с нелиней­ной характеристикой UH = f (R1) = f (x) за счет намотки потен­циометра на фигурный или ступенчатый каркас или переменного шага намотки.

Индуктивные преобразователи (датчики). Принцип их действия основан на изменении индуктивного сопротивления катушки при перемещении ферромагнитного якоря.

Индуктивные датчики используют для преобразования линей­ных и угловых перемещений в электрический сигнал. Они часто применяются как преобразователи при измерении размеров дета­лей, давления, расходов сред и т. п. Схемы простейших датчиков представлены на рис. 11. Входной величиной датчика является ширина воздушного зазора (м), выходной — ток i (А) при за­данном напряжении питания UП (В). Ток в цепи обмотки датчика

Индуктивность может быть определена приближенно по фор­муле

Тогда

Рис. 11. Индуктивные преобразователи: а — индуктивный датчик; б — дифференциальный датчик

где S — сечение магнитопровода, м2; f — частота тока в питающей сети, Гц; 0 = 1,26 10-6 Гн/м — магнитная проницаемость воз­духа; Z — полное сопротивление.

Таким образом, i = f ( ). Датчики работают при частоте пи­тающей сети от 50 до 5000 Гц.

Для определения размеров применяют индуктивный дифферен­циальный датчик (рис. 11, б). Он имеет две катушки 2 и 4, вклю­ченные по дифференциальной схеме. Подвижный сердечник 3 сое­динен с измерительным штоком /. При 1= 2 параметры катушек одинаковы и I1 I2, U=U1U2=0. Если измерительный шток изменит положение ( 1 2)!, то I1> I2 или I1< I2, и на выходе U 0. Сигнал будет пропорционален перемещению сер­дечника, и знак определится направлением перемещения сердеч-

ника от среднего положения. Дифференциальные датчики отли­чаются лучшей чувствительностью и значительно меньшей погреш­ностью в результате колебаний температуры и напряжения пи­тания.

Электроконтактные конечные выключатели в схемах автома­тики стали заменять бесконтактными индуктивными конечными выключателями типа БВК (см. рис. 8, в) с двумя сердечниками. На одном расположены обмотка Wк и обмотка положительной об­ратной связи Wn.с. Обмотки обратных связей включены встречно.

При прохождении алюминиевого экрана Э, который жестко закреплен на подвижном органе станка, в зазоре между обмотками

Рис. 12. Варианты емкостных преобразователей:

1 — обкладки конденсатора; 2 — среда

WK и Wo.с связь ослабевает и возникает генерация. В контуре WK.СЗ появляется переменный ток, который индуцирует ЭДС в катушке Wn.c. В цепи базы транзистора происходит детекти­рование переменной составляющей тока базы. Транзистор откры­вается, вызывая срабатывание реле К.

Емкостные преобразователи, (рис. 12). Они преобразуют ли­нейные или угловые перемещения в изменение емкости конденса­тора. При частоте 50 Гц емкостные преобразователи имеют низкую чувствительность и требуют усилительных устройств. Если частота питающего напряжения более 1000 Гц, они обладают достаточной чувствительностью.

Область применения этих датчиков не ограничена измерением линейных перемещений и их используют для контроля уровня или влажности материалов. Изменение емкости в этих случаях проис­ходит за счет изменения диэлектрических свойств среды.

Для плоского конденсатора емкость определяется как

где — диэлектрическая проницаемость, Ф/м; S — площадь пе­рекрытия пластин, см2; — расстояние между пластинами, см.

Емкостные датчики требуют повышенной частоты питания.

Фотоэлектрические датчики. Фотоэлектрические датчики полу­чили широкое распространение в быстродействующих входных устройствах цифровых вычислительных машин, автоматических приборах фотоконтроля с целью учета продукции, измерения длин,

освещенности, защиты рук, например при работе на прессах, при фотокопировании, а также в различных приборах оптики. Виды фотоэлектрических датчиков (фотоэлементов) даны на рис. 13.

В фотоэлементах с внешним фотоэффектом под воздейст­вием света освободившиеся электроны с катода / направляются к аноду 2. В замкнутой цепи возникает электрический ток. К этой

Рис. 13. Фотоэлектрические датчики:

а — фотоэлементы с внешним фотоэффектом; б — фотоэлементы с внутренним фотоэффек­том; в — фотоэлементы с запирающим слоем; г, д, е, ж — варианты применения фотоэле­ментов в качестве датчиков

группе относятся вакуумные и газонаполненные фотоэлементы (рис. 13, а). В фотоэлементах с внутренним фотоэффектом освободившиеся электроны остаются в веществе, повышая его элек­тропроводность. Эти фотоэлементы называют фотосопротивлениями (рис. 13, б). В фотоэлементах с запирающим изоляцион­ным слоем под действием света освободившиеся электроны из слоя 1, освещенного вещества переходят в слой 2, неосвещенного вещества (рис. 13, б).

На рис. 13, г фототок возникает в результате преобразования температуры нагретого тела / в световой поток 2 (фотоэлектриче­ские пирометры). На рис. 13, д световой поток 2 проходит к фото­элементу 4 через среду 3, которой частично поглощается. Это яв­ление используется в фотоэлектрических приборах для определе­ния прозрачности жидкости или газов. На рис. 13, е световой по­ток 2 от постоянного источника света 5 падает на поверхность 6, частично поглощается, а отразившаяся часть потока 7 поступает

на фотоэлемент 4. Этот принцип применяют для контроля состоя­ния поверхности. На рис. 13, ж световой поток 2 пересекается движущимся предметом 8, полностью или частично экранируя его. Фотоэлемент 4 используют для счета изделий, контроля линейных размеров, защиты рук работающего на станке.