
- •Глава 1
- •§ 1. Основные понятия, определения и классификация систем автоматики
- •§ 2. Классификация элементов систем автоматического управления
- •§ 3. Принципы схемного отображения технологических объектов, процессов и систем управления
- •Глава 2 воспринимающие элементы систем автоматики
- •§ 4. Воспринимающие элементы перемещений
- •§ 5. Датчики усилий
- •§ 6. Датчики частоты вращения
- •§ 7. Датчики углов поворота
- •§ 8. Воспринимающие элементы температур
- •§ 9. Воспринимающие элементы давления
- •§ 10. Воспринимающие элементы расхода и уровня
- •Глава 3
- •§ 12. Усилительные элементы
- •§ 13. Вычислительные и логические элементы
- •§ 14. Исполнительные устройства с электродвигателями
- •§ 15. Исполнительные механизмы с электромагнитными
- •§ 16. Пневматические и гидравлические исполнительные механизмы
- •§ 17. Регулирующие органы и их характеристики
- •Глава 4 системы автоматического контроля
- •§ 18. Основные понятия об измерениях и средствах измерений
- •§ 19. Структура и назначение систем контроля
- •§ 20. Измерительные схемы и вторичные приборы
- •§ 21. Преобразование сигналов и системы передачи показаний на расстояние
- •§ 22. Автоматический учет сырья
- •§ 23. Автоматический контроль линейных размеров
- •§ 24. Автоматический контроль качества поверхности
- •§ 25. Автоматический контроль температуры
- •3. Приборы для измерения температуры табл
- •§ 26. Автоматический контроль уровня
- •§ 27. Автоматический контроль влажности
- •§ 28. Автоматический контроль расхода и давления
- •§ 29. Автоматический контроль работы оборудования
- •§ 30. Информационно-измерительные системы
- •Глава 5
- •§ 32. Структурные схемы и их преобразование
- •§ 33. Классификация звеньев по динамическим свойствам
- •§ 34. Характеристики автоматических систем управления
- •§ 35. Инженерные методы расчета и выбора регуляторов
- •§ 36. Элементы построения оптимальных систем управления
- •Глава 6
- •§ 37. Основные понятия и определения
- •§ 38. Основные формализованные языки описания логических систем управления
- •§ 39. Синтез однотактных систем логического управления
- •6. Таблица состояний
- •Глава 7
- •§ 41.ГПреимущества автоматизированных производств
- •§ 42. Оптимизационная математическая модель производства
- •§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
- •§ 44. Влияние надежности на эффективность автоматизации деревообрабатывающих производств
- •Глава 8
- •§ 45. Характеристика производственных процессов и производств
- •§ 48. Регулирование потока и запаса материала
- •§ 49. Технологические основы управления дискретными производственными процессами
- •Глава 9
- •§ 50. Взаимосвязь параметров при механической обработке древесины
- •§ 51. Системы автоматического управления режимами обработки деталей
- •§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
- •§ 53. Особенности динамики систем стабилизации частоты вращения (режимов обработки)
- •§ 54. Оптимизация динамических свойств автоматических систем управления
- •Глава 10
- •§ 55. Типовые блокировочные связи в системах управления
- •7. Основные виды межузловых связей
- •§ 56. Системы управления станками пиления древесины
- •§ 57. Системы управления станками строгальной и фрезерной групп
- •§ 58. Системы управления шипорезными, сверлильными, долбежными и лущильными станками
- •§ 59. Системы управления автоматами на базе механических программоносителей
- •§ 60. Системы программного управления
- •§ 61. Самонастраивающиеся системы управления
- •§ 62. Микропроцессоры и микроэвм в системах управления
- •9. Символьное обозначение команд
- •§ 63. Основные сведения о манипуляторах, роботах и системах управления ими
- •Глава 11
- •§ 64. Классификация станочных линий
- •§ 65. Структура автоматических линий
- •§ 66. Эффективность функционирования автоматических
- •§ 67. Линии раскроя плит
- •§ 68. Линии облицовывания плит
- •§ 69. Линии брусковых деталей
- •§ 70. Линии повторной обработки щитовых деталей
- •§ 71. Линии отделки
- •§ 72. Линии сортировки
- •Глава 12
- •§ 73. Управление загрузчиками автоматических
- •§ 74. Схемы управления разгрузчиками автоматических линий
- •§ 75. Транспортно-ориентирующие устройства автоматических линий и системы управления ими
- •§ 76. Устройства автоматического позиционирования
- •Глава 13
- •§ 77. Характеристика складов деталей и комплектующих изделий
- •§ 78. Системы управления складами
- •§ 79. Автоматизация транспортных работ
- •Глава 14
- •§ 80. Управление процессами сушки в лесосушильных камерах
- •§ 81. Управление процессом сушки в конвейерных сушилках
- •§ 82. Управление процессом сушки в барабанных сушилках
- •§ 83. Управление режимом горячего прессования
- •§ 84. Управление процессами пропарки древесины
§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
Различают номинальную, техническую и фактическую производительность.
Номинальная производительность — математическое ожидание количества годной продукции, выпускаемой оборудованием в единицу времени при условии работы его без простоев, вызываемых внешними причинами. Номинальная производительность равна
где F (XI, Х2, .... ХК) — функция, зависящая от вида обору дования и его главных конструктивных и технологических пара метров XI, Х2 ХК; F — коэффициент использования глав ных параметров оборудования в зависимости от характеристики обрабатываемой продукции и сырья; T— коэффициент стабиль ности технологического процесса, определяющий процент годной продукции.
Техническая производительность — математическое ожидание количества годной продукции, выпускаемой оборудованием за еди-
ницу времени за некоторый период эксплуатации с учетом простоев, связанных с восстановлением работоспособности, техническим обслуживанием, наладкой на новый вид продукции, сменой инструмента, разворачиванием и завершением технологического процесса, отдыхом рабочих. Техническая производительность равна ПT =
,
где
i—математическое
ожидание потерь времени
по i-й
причине за период эксплуатации Т.
Фактическая производительность — количество годной продукции, изготовляемое в единицу времени оборудованием в условиях производства в течение периода времени календарного планирования (смена, месяц, год). Фактическая производительность равна
где Q — плановый объем продукции на период календарного планирования TK, N = [Q /TKПT] + 1 — число параллельно работающих единиц оборудования, предназначенных для одинакового преобразования заготовок в детали (для одинакового вида обработки).
Рассмотрим,
как меняется производительность
оборудования при автоматизации.
Деревообрабатывающее оборудование
подразделяют
по технологическим признакам: на
конвейерное (проходное), позиционное,
комбинированное; однооперационное и
многооперационное;
с индивидуальной и групповой обработкой
заготовок. Анализ
номинальной производительности проведем
при
=
1 — оборудование
имеет нормальную точность и техническое
состояние. Тогда
номинальная производительность
оборудования равна: конвейерного
где В — ширина конвейера; Н — высота его рабочей зоны; U — скорость подачи (скорость конвейера); V — коэффициент плотности заполнения рабочей зоны конвейера, зависящей от набора размеров обрабатываемых деталей индивидуальной или групповой обработки ( F= V); позиционного
где
Тц
= Тр
+ Тx
—
время цикла; Тр
—
рабочее время выполнения
технологической операции; Тх
—
время
несовмещенных холостых
ходов (загрузка, съем, базирование и
фиксация заготовок,
подвод и отвод инструмента, контрольные
операции и др.); В,
Н, L
—
размеры рабочей зоны или максимальные
размеры обрабатываемой
заготовки;
V
—
коэффициент
заполнения рабочей зоны,
зависящей от типоразмеров заготовок и
индивидуальной или
групповой обработки.
Производительность многооперационного оборудования равна производительности «худшего» агрегата технологического или вспомогательного. При этом для агрегатов с более высокой произ-
водительностью увеличивается Тц или ухудшается V за счет увеличения разрывов между заготовками. Формулы (33) и (34) позволяют определить производительность в 1 м3 продукции за единицу времени. Но для многих процессов (шлифование, облицовывание, обработка мест под фурнитуру, отделка и др.) не может быть использована вся высота рабочей зоны. Для этих процессов Н = 1, и производительность определяется в 1 м2/единица времени. Для перевода производительности в кубические метры за единицу времени необходимо Н = h, где h — толщина заготовки (щита, бруска). При расчете производительности при Н = 1 V = S и определяется как коэффициент заполнения площади конвейера или рабочей зоны станка.
Для согласования работы смежных агрегатов бывает необходимо определить штучную номинальную производительность — число деталей, изготовляемых в единицу времени, или ритм — время на обработку. Штучная производительность равна
где ПHv, ПHs — номинальная производительность, вычисленная по формулам (32) и (33) и измеряемая, соответственно в м3/ед. времени и м2/ед. времени; vcp и scp — соответственно объем и площадь средней детали, характеризующей набор обрабатываемых заготовок.
Ритм можно определить по формуле R = 1/ПНшт или R = = Тц/N, где Тц — время цикла; N — число одновременно обрабатываемых заготовок (при индивидуальной обработке N = 1, при групповой N 2). Для конвейерного оборудования время цикла можно определить по формулам: для фрикционных конвейеров Тцк ф =(lср + a)/U; для конвейеров с упорами (жестких) ТЦк y = D/U, где lср —размер в направлении подачи средней детали; а — разрыв между заготовками на конвейере; D — шаг между упорами. Число одновременно обрабатываемых заготовок для позиционного оборудования равно Nп = BL s/scp или Nп = = BLH v/vгp, а число деталей, располагаемых параллельно на конвейере в один слой NK = B/bcp, где scp — площадь средней заготовки; bср — размер (ширина) средней заготовки.
Расчет штучной производительности через производительность в единицах объема или поверхности сделан намеренно, так как ПН или ПНs являются наиболее общими для всего производственного потока. Кроме того, ориентация на штучную производительность может привести к снижению использования технических возможностей оборудования и основных фондов предприятия. Коэффициент F показывает, как используются технические возможности в условиях реального производства.
С помощью специальных алгоритмов и программ ЭВМ, входящих в АСУП, возможно распределить материальные потоки в производстве так, чтобы обеспечить максимальные значения F хотя бы
для ведущего оборудования. Это позволяет существенно интенсифицировать производство. Можно увеличить производительность за счет интенсификации режимных факторов.
Например, скорость подачи (посылки) лесопильных рам зависит от диаметра бревна и остроты инструмента. В этом случае автоматическое управление скоростью подачи в зависимости от усилия резания дает увеличение производительности (см. § 50). Однако скорость подачи регулируется в диапазоне, верхняя граница которого ограничена качеством пилопродукции и работоспособностью пил (заполнение пазух зубьев, устойчивостью полотна пилы). У многих видов оборудования режимные факторы интенсифицировать не удается. У фрезерующих станков скорость подачи определяется чистотой обработки, у шлифовальных — работоспособностью и производительностью инструмента. Скорость конвейеров сушильных установок определяется продолжительностью сушки лака или другого материала и т. д. Как видим, скорость подачи не зависит от размеров обрабатываемой заготовки или имеет ограниченный диапазон регулирования. В то же время мощность механизмов подачи и резания рассчитывают по максимальной заготовке. Это еще более усилит важность увеличения F, так как малозагружаемые электродвигатели ухудшают cos электроустановок и ведут к перерасходу электроэнергии предприятием.
Большое влияние оказывает автоматизация на техническую производительность, изменяя величину внецикловых потерь времени. Внедрение систем программного числового управления оборудованием в режиме наладки, автоматизация смены инструмента, а также применение роботов и манипуляторов могут сократить простои на 50—80 %, что обеспечивает увеличение технической производительности оборудования на 20—50 %.
Простои, связанные с техническим обслуживанием, восстановлением работоспособности и ремонтом оборудования определяются главным образом его надежностью, а также численностью обслуживающего персонала.
Деревообрабатывающее оборудование обычно выпускают гаммами, т. е. оборудование определенного вида имеет ряд модификаций, различающихся производительностью, размерами обрабатываемых заготовок и другими параметрами. Для каждой модификации внецикловые потери времени имеют некоторую постоянную среднюю величину. Поэтому и техническая производительность будет (при неизменных условиях эксплуатации) постоянной. Причем Пф<Пт. По мере развития производства загрузка оборудования возрастает и наступает момент, когда Пф = Пт. При этом мы получаем наилучшее использование оборудования. Но для дальнейшего развития производства необходимо установить дополнительное число единиц оборудования или заменить существующее более производительным. Путем автоматизации можно увеличить производительность действующего оборудования. Выбор лучшего варианта развития производства может быть сделан на основании реализации модели производства (см. главу 11).