
- •Глава 1
- •§ 1. Основные понятия, определения и классификация систем автоматики
- •§ 2. Классификация элементов систем автоматического управления
- •§ 3. Принципы схемного отображения технологических объектов, процессов и систем управления
- •Глава 2 воспринимающие элементы систем автоматики
- •§ 4. Воспринимающие элементы перемещений
- •§ 5. Датчики усилий
- •§ 6. Датчики частоты вращения
- •§ 7. Датчики углов поворота
- •§ 8. Воспринимающие элементы температур
- •§ 9. Воспринимающие элементы давления
- •§ 10. Воспринимающие элементы расхода и уровня
- •Глава 3
- •§ 12. Усилительные элементы
- •§ 13. Вычислительные и логические элементы
- •§ 14. Исполнительные устройства с электродвигателями
- •§ 15. Исполнительные механизмы с электромагнитными
- •§ 16. Пневматические и гидравлические исполнительные механизмы
- •§ 17. Регулирующие органы и их характеристики
- •Глава 4 системы автоматического контроля
- •§ 18. Основные понятия об измерениях и средствах измерений
- •§ 19. Структура и назначение систем контроля
- •§ 20. Измерительные схемы и вторичные приборы
- •§ 21. Преобразование сигналов и системы передачи показаний на расстояние
- •§ 22. Автоматический учет сырья
- •§ 23. Автоматический контроль линейных размеров
- •§ 24. Автоматический контроль качества поверхности
- •§ 25. Автоматический контроль температуры
- •3. Приборы для измерения температуры табл
- •§ 26. Автоматический контроль уровня
- •§ 27. Автоматический контроль влажности
- •§ 28. Автоматический контроль расхода и давления
- •§ 29. Автоматический контроль работы оборудования
- •§ 30. Информационно-измерительные системы
- •Глава 5
- •§ 32. Структурные схемы и их преобразование
- •§ 33. Классификация звеньев по динамическим свойствам
- •§ 34. Характеристики автоматических систем управления
- •§ 35. Инженерные методы расчета и выбора регуляторов
- •§ 36. Элементы построения оптимальных систем управления
- •Глава 6
- •§ 37. Основные понятия и определения
- •§ 38. Основные формализованные языки описания логических систем управления
- •§ 39. Синтез однотактных систем логического управления
- •6. Таблица состояний
- •Глава 7
- •§ 41.ГПреимущества автоматизированных производств
- •§ 42. Оптимизационная математическая модель производства
- •§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
- •§ 44. Влияние надежности на эффективность автоматизации деревообрабатывающих производств
- •Глава 8
- •§ 45. Характеристика производственных процессов и производств
- •§ 48. Регулирование потока и запаса материала
- •§ 49. Технологические основы управления дискретными производственными процессами
- •Глава 9
- •§ 50. Взаимосвязь параметров при механической обработке древесины
- •§ 51. Системы автоматического управления режимами обработки деталей
- •§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
- •§ 53. Особенности динамики систем стабилизации частоты вращения (режимов обработки)
- •§ 54. Оптимизация динамических свойств автоматических систем управления
- •Глава 10
- •§ 55. Типовые блокировочные связи в системах управления
- •7. Основные виды межузловых связей
- •§ 56. Системы управления станками пиления древесины
- •§ 57. Системы управления станками строгальной и фрезерной групп
- •§ 58. Системы управления шипорезными, сверлильными, долбежными и лущильными станками
- •§ 59. Системы управления автоматами на базе механических программоносителей
- •§ 60. Системы программного управления
- •§ 61. Самонастраивающиеся системы управления
- •§ 62. Микропроцессоры и микроэвм в системах управления
- •9. Символьное обозначение команд
- •§ 63. Основные сведения о манипуляторах, роботах и системах управления ими
- •Глава 11
- •§ 64. Классификация станочных линий
- •§ 65. Структура автоматических линий
- •§ 66. Эффективность функционирования автоматических
- •§ 67. Линии раскроя плит
- •§ 68. Линии облицовывания плит
- •§ 69. Линии брусковых деталей
- •§ 70. Линии повторной обработки щитовых деталей
- •§ 71. Линии отделки
- •§ 72. Линии сортировки
- •Глава 12
- •§ 73. Управление загрузчиками автоматических
- •§ 74. Схемы управления разгрузчиками автоматических линий
- •§ 75. Транспортно-ориентирующие устройства автоматических линий и системы управления ими
- •§ 76. Устройства автоматического позиционирования
- •Глава 13
- •§ 77. Характеристика складов деталей и комплектующих изделий
- •§ 78. Системы управления складами
- •§ 79. Автоматизация транспортных работ
- •Глава 14
- •§ 80. Управление процессами сушки в лесосушильных камерах
- •§ 81. Управление процессом сушки в конвейерных сушилках
- •§ 82. Управление процессом сушки в барабанных сушилках
- •§ 83. Управление режимом горячего прессования
- •§ 84. Управление процессами пропарки древесины
§ 15. Исполнительные механизмы с электромагнитными
ПРИВОДАМИ
Электромагнитные исполнительные механизмы объединяют приводы с электромагнитами и приводы с электромагнитными муфтами Исполнительные механизмы с приводом от электромагнитных
Рис. 32. Принципиальные схемы электромагнитных приводов:
а - электромагнитные муфты скольжения; б - электромагнит; в - характеристики
электромагнита
муфт. Такие механизмы применяются в основном для передачи вращательного движения. Существует два типа муфт: фрикционные и электромагнитные муфты скольжения.
Фрикционные муфты предназначены для периодического включения и отключения валов механизмов. Конструктивно они
состоят из ведомых и ведущих дисков муфт. Силы трения, возникающие между их поверхностями, позволяют передавать крутящий момент. Электромагнитные муфты скольжения представляют собой устройства для плавного регулирования частоты вращения рабочего вала, приводимого в движение электродвигателем переменного тока, в пределах 1 10 (рис. 32, а).
Муфта состоит из двух половин — ведущей (якоря) 1, ведомой (индуктора) 2 с обмоткой 3. Первая приводится от асинхронного электродвигателя, вторая соединена с валом рабочей машины через шкив 6. Обмотка питается постоянным током от усилителя ЭУ, присоединенного через сопротивление R4 к контактным кольцам 5. С изменением силы тока в обмотке изменяются величина магнитного потока и величина скольжения ведомой части муфты 2 относительно ведущей 1. При этом плавно изменяется частота вращения вала муфты.
Тахогенератор и электронный усилитель образуют контур отрицательной обратной связи по скорости, что позволяет стабилизировать заданную скорость. Муфты имеют низкий КПД, поэтому применяют их редко. В эксплуатации можно встретить приводы подач деревообрабатывающих станков с муфтами скольжения типа ПМС-М в стружечных, шлифовальных, рейсмусовых и других станках.
Исполнительные механизмы с электромагнитным (соленоидным) приводом. Их используют в случаях, когда регулирующему органу необходимо сообщать поступательное перемещение. Поэтому эти механизмы применяют при двухпозиционном регулировании.
где dGВ/d — магнитная проводимость воздушного зазора ; I — сила тока в обмотке; W — число витков обмотки.
Время срабатывания электромагнита может быть определено по формуле
Тяговое усилие электромагнитов определяется по формуле
где Т = L/R — постоянная времени электромагнита; L — индуктивность обмотки при опущенном якоре, Гн; R — активное сопротивление обмотки, Ом; Кэ = Ip /Icp — коэффициент запаса электромагнита по току; Ip и Icp —рабочий ток и ток срабатывания электромагнита соответственно.
Электромагниты широко используют для управления гидравлическими золотниками, пневматическими кранами, тормозными устройствами, переключением механизмов в станках, прессах и поточных линиях. Электромагниты имеют несколько конструктивных исполнений (см. рис. 32, б) с катушкой / и поступательно перемещающимся якорем 2. Могут изготавливаться с якорем, поворачивающимся на некоторый угол.
Тяговое усилие в паспортах электромагнитов указывается для максимального рабочего хода X. Для питания электромагнитов
используют как постоянный, так и переменный ток. Часто применяют короткоходовые электромагниты (2—5 мм) МП, длинноходо-вые (50—150 мм) КМП, ВМ, электромагниты переменного тока длинноходовые ЭС (однофазные) и КМТ (трехфазные).
Тяговые характеристики электромагнитов представлены на рис. 32, в. Из характеристик очевидно, что при равных условиях у электромагнитов переменного тока тяговая характеристика хуже. Величина переменного тока зависит от воздушного зазора.