
- •Глава 1
- •§ 1. Основные понятия, определения и классификация систем автоматики
- •§ 2. Классификация элементов систем автоматического управления
- •§ 3. Принципы схемного отображения технологических объектов, процессов и систем управления
- •Глава 2 воспринимающие элементы систем автоматики
- •§ 4. Воспринимающие элементы перемещений
- •§ 5. Датчики усилий
- •§ 6. Датчики частоты вращения
- •§ 7. Датчики углов поворота
- •§ 8. Воспринимающие элементы температур
- •§ 9. Воспринимающие элементы давления
- •§ 10. Воспринимающие элементы расхода и уровня
- •Глава 3
- •§ 12. Усилительные элементы
- •§ 13. Вычислительные и логические элементы
- •§ 14. Исполнительные устройства с электродвигателями
- •§ 15. Исполнительные механизмы с электромагнитными
- •§ 16. Пневматические и гидравлические исполнительные механизмы
- •§ 17. Регулирующие органы и их характеристики
- •Глава 4 системы автоматического контроля
- •§ 18. Основные понятия об измерениях и средствах измерений
- •§ 19. Структура и назначение систем контроля
- •§ 20. Измерительные схемы и вторичные приборы
- •§ 21. Преобразование сигналов и системы передачи показаний на расстояние
- •§ 22. Автоматический учет сырья
- •§ 23. Автоматический контроль линейных размеров
- •§ 24. Автоматический контроль качества поверхности
- •§ 25. Автоматический контроль температуры
- •3. Приборы для измерения температуры табл
- •§ 26. Автоматический контроль уровня
- •§ 27. Автоматический контроль влажности
- •§ 28. Автоматический контроль расхода и давления
- •§ 29. Автоматический контроль работы оборудования
- •§ 30. Информационно-измерительные системы
- •Глава 5
- •§ 32. Структурные схемы и их преобразование
- •§ 33. Классификация звеньев по динамическим свойствам
- •§ 34. Характеристики автоматических систем управления
- •§ 35. Инженерные методы расчета и выбора регуляторов
- •§ 36. Элементы построения оптимальных систем управления
- •Глава 6
- •§ 37. Основные понятия и определения
- •§ 38. Основные формализованные языки описания логических систем управления
- •§ 39. Синтез однотактных систем логического управления
- •6. Таблица состояний
- •Глава 7
- •§ 41.ГПреимущества автоматизированных производств
- •§ 42. Оптимизационная математическая модель производства
- •§ 43. Производительность автоматизированного оборудования деревообрабатывающих производств
- •§ 44. Влияние надежности на эффективность автоматизации деревообрабатывающих производств
- •Глава 8
- •§ 45. Характеристика производственных процессов и производств
- •§ 48. Регулирование потока и запаса материала
- •§ 49. Технологические основы управления дискретными производственными процессами
- •Глава 9
- •§ 50. Взаимосвязь параметров при механической обработке древесины
- •§ 51. Системы автоматического управления режимами обработки деталей
- •§ 52. Системы автоматической стабилизации частоты вращения исполнительных двигателей
- •§ 53. Особенности динамики систем стабилизации частоты вращения (режимов обработки)
- •§ 54. Оптимизация динамических свойств автоматических систем управления
- •Глава 10
- •§ 55. Типовые блокировочные связи в системах управления
- •7. Основные виды межузловых связей
- •§ 56. Системы управления станками пиления древесины
- •§ 57. Системы управления станками строгальной и фрезерной групп
- •§ 58. Системы управления шипорезными, сверлильными, долбежными и лущильными станками
- •§ 59. Системы управления автоматами на базе механических программоносителей
- •§ 60. Системы программного управления
- •§ 61. Самонастраивающиеся системы управления
- •§ 62. Микропроцессоры и микроэвм в системах управления
- •9. Символьное обозначение команд
- •§ 63. Основные сведения о манипуляторах, роботах и системах управления ими
- •Глава 11
- •§ 64. Классификация станочных линий
- •§ 65. Структура автоматических линий
- •§ 66. Эффективность функционирования автоматических
- •§ 67. Линии раскроя плит
- •§ 68. Линии облицовывания плит
- •§ 69. Линии брусковых деталей
- •§ 70. Линии повторной обработки щитовых деталей
- •§ 71. Линии отделки
- •§ 72. Линии сортировки
- •Глава 12
- •§ 73. Управление загрузчиками автоматических
- •§ 74. Схемы управления разгрузчиками автоматических линий
- •§ 75. Транспортно-ориентирующие устройства автоматических линий и системы управления ими
- •§ 76. Устройства автоматического позиционирования
- •Глава 13
- •§ 77. Характеристика складов деталей и комплектующих изделий
- •§ 78. Системы управления складами
- •§ 79. Автоматизация транспортных работ
- •Глава 14
- •§ 80. Управление процессами сушки в лесосушильных камерах
- •§ 81. Управление процессом сушки в конвейерных сушилках
- •§ 82. Управление процессом сушки в барабанных сушилках
- •§ 83. Управление режимом горячего прессования
- •§ 84. Управление процессами пропарки древесины
§ 13. Вычислительные и логические элементы
Разнообразие задач управления предопределяет необходимость использования в системах различных классов вычислительных и логических элементов автоматики.
Все вычислительные счетно-решающие устройства разделяются на аналоговые (непрерывного действия) и цифровые (дискретного действия).
Аналоговые вычислительные устройства. В этих устройствах все математические величины, участвующие в решении задачи, представлены в некотором масштабе непрерывно изменяющимися физическими величинами: перемещениями, углами поворота, напряжениями, токами и др. Устройства этого типа являются физическими системами (механические, электрические и др.), в которых протекают процессы, описываемые уравнениями, подобными уравнениям задачи, подлежащей решению. Таким образом, аналоговые вычислительные устройства являются математическими мо-
При
большом К
последний
член в уравнении (2) стремится к нулю.
Тогда Uвых
будет связано с UBX
следующей
зависимостью
Широкое распространение получили электронные моделирующие устройства. Это объясняется, с одной стороны, пригодностью одних и тех же математических уравнений для описания объектов и явлений различной физической природы, с другой — тем, что этот вид аналоговых устройств удобен в управлении, компактен и обладает гибкой структурой.
Электронные устройства обеспечивают решение обыкновенных дифференциальных уравнений любого порядка. В состав этих устройств входят следующие блоки: интегрирующие, суммирующие, множительные; осуществляющие масштабное преобразование; функциональные для образования нелинейных функций и ряд вспомогательных блоков, обеспечивающих возможность наблюдения и регистрации решения и управления устройством.
Рис. 25. Структурная схема
операционного суммирующего
усилителя
получим
=i0
Если в схеме суммирующего усилителя вместо Ro включить конденсатор, то получится интегрирующий усилитель, причем при наличии у него нескольких входов происходит интегрирование суммы. Если в схеме суммирующего усилителя вместо сопротивлений Rj включить конденсаторы, то получим дифференцирующий усилитель.
Соединяя определенным образом различные блоки аналоговых вычислительных устройств, можно получать различные электронные модели, довольно точно описывающие явления, протекающие в технологических объектах.
Вычислительные устройства дискретного действия. В них все математические величины представляют в виде дискретных значений. Вычисление заключается в последовательном выполнении арифметических операций. В устройствах этого типа широко применяют логические элементы, триггеры, регистры, счетчики, дешифраторы и т. д.
Для решения сложных задач управления технологическими процессами в системах автоматики используют различные логические элементы. К логическим элементам относятся схемы, реализующие основные логические функции — И, ИЛИ и НЕ. Поскольку любая сложная логическая функция может быть выражена через элементарные функции И, ИЛИ и НЕ, система логических элементов И, ИЛИ и НЕ называется функционально полной. Иногда в качестве типовых используют и более сложные элементы, реализующие логические функции И—НЕ, ИЛИ—НЕ и др., позволяющие строить более сложные комбинационные схемы для управления технологическими объектами.
К логическим элементам, выполняющим основные логические функции, относятся схемы НЕ, И (схема совпадения) и ИЛИ (схема собирательная).
С помощью схемы НЕ реализуется логическая функция НЕ (отрицание). Эта схема выполняется на активных элементах — реле, транзисторах и т. д. На рис. 26, а показана схема НЕ, выполненная на транзисторе: положительный сигнал на ее выходе (коллекторе транзистора) будет только при отрицательном сигнале на ее входе.
С помощью собирательной схемы реализуется функция ИЛИ (дизъюнкция). Эта схема показана на рис. 26, д. Сигнал на выходе схемы появится только тогда, когда есть сигнал- хотя бы на одном из входов.
Триггер представляет собой устройство, с помощью которого можно записывать, хранить и считать двоичную информацию. Триггер имеет два устойчивых состояния равновесия. Одному из этих состояний приписывается значение 1, а другому — 0. Состояние триггера распознается по его выходному сигналу. Под влиянием входного сигнала триггер скачкообразно переходит из одного устойчивого состояния в другое, при этом скачкообразно изменяется уровень напряжения его выходного сигнала.
Рис. 26. Логические элементы автоматики: схема НЕ (а), ее условное обозначение (б); схема И (в), ее условное обозначение (г); схема ИЛИ (д), ее условное обозначение (e)
Для
удобства использования в схемах
вычислительных устройств
триггеры обычно имеют два выхода: прямой
Q
(называемый также
«выход 1») и инверсный
(«выход
0»). В единичном состоянии
триггера на выходе Q
высокий
уровень сигнала, а в нулевом — низкий.
На выходе
—
наоборот.
Простейшим триггером является асинхронный RS-триггер, выполненный на двух логических элементах ИЛИ—НЕ. Логическая структура и его условное обозначение приведены на рис. 27, а, б.
Такой триггер образован из двух комбинационных схем ИЛИ— НЕ, соединенных таким образом, что возникают положительные обратные связи, благодаря которым в устойчивом состоянии выходной транзистор одной схемы ИЛИ—НЕ закрыт, а другой открыт.
Полученный таким образом триггер имеет два входа: S — установки триггера в 1 и R — установки триггера в 0.
Рассмотрим прежде всего воздействие на такой триггер комбинации сигналов S = 1, R = 1 и S = 0, R = 0.
Сочетание S = l, R = 1 является запрещенным, так как при нем на обоих выходах триггера устанавливаются логические 0 и после снятия входных сигналов состояние его непредсказуемо.
Для элемента ИЛИ—НЕ логический 0 является пассивным сигналом, с поступлением его на вход состояние выхода элемента не изменяется. Поэтому комбинация S = 0, R = 0 не изменяет состояние триггера.
Логическая 1 для элемента ИЛИ—НЕ является активным сигналом: наличие ее на входе однозначно определяет на выходе логический 0 вне зависимости от сигнала на другом входе. Отсюда
Рис. 27. Функциональные схемы триггеров: асинхронного .RS-триггера (а),
его условное обозначение (б); синхронного RS-триггера (б); его условное
обозначение (г); .JK-триггера (д), его условное обозначение (е)
следует, что переключающим сигналом для рассматриваемого триггера является логическая 1, а также то, что вход S (установка триггера в состояние Q = 1) должен быть связан с элементом, выход которого принят за (см. рис. 27, а).
Для переключения триггера в состояние Q = 1 на его входы следует подать комбинацию S=1, R = 0, а для переключения в состояние Q = 0 — S = 0, R = 1.
Пусть триггер находится в состоянии 0 (Q = 0, = 1), а на его входах действуют сигналы S = 0, R = 0. Для переключения его в состояние Q = 1 подадим на входы комбинацию S = 1, R = 0. Тогда на выходе элемента Э2 установится логический 0, на входах элемента Э1 будут одновременно действовать логические 0 и на выходе Q установится логическая 1 — триггер переключается в новое состояние (Q = 1, = 0). Для его переключения из этого состояния на входы должна поступить комбинация S = 0, R = 1. После этого на выходе Q будет логический 0, на входах элемента Э2 одновременно окажутся логические 0 и его выход примет потенциал, соответствующий = 1 — триггер переключается в состояние Q = 0, = 1.
Часто необходимо, чтобы в вычислительных устройствах триггер реагировал на входные сигналы только в определенные моменты времени. Эти моменты обычно задаются с помощью дополнительного — входного — сигнала синхронизации С. На рис. 27, в, г приведены схема и условное обозначение такого синхронного RS-триггера. Она содержит асинхронный RS-триггер Т с прямыми входами и две схемы совпадения. Последние передают переключающую логическую 1 с информационного S- или S-входа на соответствующие входы Т только при наличии на синхронизирующем входе С логической 1. При С = 0 информация с S- и R-входов на триггер не передается.
Распространенным типом триггера в системах интегральных логических элементов является универсальный JK-триггер, схема и условное обозначение которого показаны на рис. 27, д, е. У рассматриваемого триггера имеются входы R и S несинхронизируемой установки, с помощью которых при С = 0 триггер может быть установлен в состояние 1 путем подачи R = 1 и S = 0 или в состояние 0 путем подачи R = 0 и S = 1. При подаче сигналов R = S = 1, не меняющих состояние схемы, работа триггера осуществляется под воздействием синхронизирующих сигналов С =1. Входы J и К соответствуют входам S и R RS-триггера, это означает, что сигнал 1 на входе / устанавливает триггер в состояние 1, а сигнал 1 на входе K устанавливает его в состояние 0 независимо от предыдущего состояния. Однако в отличие от RS-триг-гера в JK-триггере сигналы одновременно могут прийти на входы J и К. При этом состояние триггера изменится на противоположное, т. е. при J = К схема ведет себя как триггер со счетным входом. Регистром называется функциональное устройство, предназначенное для приема и запоминания двоичных чисел, а также для некоторых их логических преобразований.
Параллельный регистр выполняет функции записи и хранения параллельного двоичного кода. Для построения такого регистра могут быть использованы ^5-триггеры. На рис. 28, а приведена функциональная схема параллельного регистра.
Параллельный двоичный код подается на входы х1—хп триггеров. Запись производится положительными импульсами, подаваемыми на входы С триггеров. Код снимается с выходов Q2—Qn. Для установки регистра в 0 используют входы R-триггеров.
В этой схеме запись информации в регистр синхронизируется по входу С и происходит только в момент подачи на вход С положительного импульса. Работой регистра управляют две шины: установки нуля и приема информации. Прежде чем записать информацию в регистр, необходимо подать управляющий сигнал на шину установки 0, т. е. все триггеры регистра установить в состояние 0. Для приема информации в регистр необходимо подать управляющий синхронизирующий сигнал на шину приема и одновременно по информационным цепям, соединенным с единичными установочными входами триггеров, подать код записываемого числа в регистр.
Счетчик предназначен для счета поступающих на его вход импульсов, в интервале между которыми он должен хранить информацию об их числе. Поэтому счетчик состоит из запоминающих ячеек — триггеров. Ячейки счетчика соединяют таким образом, чтобы каждому числу импульсу соответствовали единичные состояния определенных ячеек. При этом совокупность единиц и нулей на выходах п ячеек счетчика представляет собой n-разрядное двоичное число, которое однозначно определяет число прошедших на входе импульсов. Поэтому ячейки счетчика называют его разрядами.
На рис. 28, б представлена схема четырехразрядного двоичного счетчика прямого счета с цепями последовательного переноса и импульсным входом. Входные импульсы положительной полярности подаются на счетный вход С триггера младшего разряда счетчика То. Перед началом счета сигнал установки нуля устанавливает в состояние 0 все триггеры счетчика. По первому входному импульсу триггер То переключается в состояние 1 и код в счетчике принимает значение х = 0001. Это значение кода сохраяется до прихода следующего импульса. Под воздействием второго сигнала триггер То переходит в состояние 0. При переходе триггера То из единичного состояния в нулевое с прямого выхода триггера То образуется положительный сигнал переноса (импульс), поступающий на счетный вход триггера Т1, который установит этот триггер в состояние 1. Код счетчика принимает значение х = 0010 и т. д.
Максимальное число, которое может быть зафиксировано в двоичном счетчике, определяется по формуле N =2n—1, где п— число разрядов счетчика.
Дешифратором называется логическая схема, преобразующая двоичный код числа, поступающего на его входы, в управляющий сигнал только на одном из его выходов. Другими словами, дешифратор представляет собой совокупность схем совпадений, формирующих управляющий сигнал на одном из выходов, в то время как на остальных выходах сигналы отсутствуют.
Принципиальная схема дешифратора с логическими элементами совпадения на диодах на два входа показана на рис. 29. Горизонтальные и вертикальные шины соединяются в определенных местах диодами, которые образуют сетку (матрицу) дешифратора. Резистор и два диода, подключенные к вертикальному проводу, образуют логический элемент И. Таких схем в сетке — четыре.
Если x1=1, а х2 = 0, то высокий уровень напряжения присутствует на выходе y1 дешифратора. При x1= 0, х2 = 1 высокий уровень напряжения присутствует на выходе y2, а при x1 = 1, х2 = 1 на выходе у3.