- •Теоретическая механика
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчёта
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчёта
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчёта
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчёта
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчёта
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твёрдого тела. Радиус инерции
- •Осевые моменты инерции однородных пластинок
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твёрдого тела
- •5.4.1. Динамика поступательного движения твёрдого тела
- •5.4.2. Динамика вращательного движения твёрдого тела
- •5.4.3. Динамика плоскопараллельного движения
- •5.4.4. Динамика сферического движения твёрдого тела
- •5.4.5. Динамика общего случая движения твёрдого тела
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки её приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твёрдого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщённые координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.3. Варианты курсового задания д 7
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания для самоконтроля
- •7. Элементы приближённой теории гироскопов
- •7.1. Гироскоп с тремя степенями свободы
- •7.2. Гироскопический момент
- •8. Удар
- •8.1. Удар двух тел
- •8.2. Удар шара о неподвижную плоскость
- •8.3. Потеря кинетической энергии при ударе двух тел
- •8.4. Действие ударных сил на твёрдое тело, при его вращении относительно неподвижной оси
- •Словарь терминов, определений, понятий
- •Оглавление
- •Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
8.3. Потеря кинетической энергии при ударе двух тел
Из–за остаточных деформаций и нагревания тел при ударе происходит частичная потеря кинетической энергии соударяющихся тел. Определим потерю кинетической энергии при упругом ударе двух поступательно движущихся тел, имеющих коэффициент восстановления k.
Введём условные обозначения: Т1 – кинетическая энергия механической системы до удара; Т2 – кинетическая энергия механической системы после удара; ΔТ – потеря кинетической энергии механической системы в процессе удара.
Величины Т1, Т2, ΔТ определяют по формулам:
T1 = 0,5·(m1·(VC1)2 + m2·(VC2)2);
T1 = 0,5·(m1·(UC1)2 + m2·(UC2)2);
ΔT = T1 – T2,
где m1, m2 – массы соударяющихся тел; VC1, VC2 – модули абсолютных скоростей центров масс тел до удара; UC1, UC2 – модули абсолютных скоростей центров масс тел после удара.
Потерю кинетической энергии при прямом центральном упругом ударе определяют по формуле
ΔT
= (1 – k2)·
·(VC1On
– VC2On)2,
где VC1On, VC2On – проекции абсолютных скоростей центров масс тел 1, 2 на главную нормаль.
При абсолютно неупругом ударе k = 0 и, следовательно,
ΔT = ·(VC1On – VC2On)2.
При абсолютно упругом ударе k = 1 и, следовательно, ΔT = 0.
Решение задач на вычисление потери кинетической энергии при ударе двух тел следует выполнять по приведённым выше формулам.
8.4. Действие ударных сил на твёрдое тело, при его вращении относительно неподвижной оси
Р
Рис. 8.8
Твёрдое
тело до удара вращается относительно
оси ОХ с угловой скоростью
.
В момент удара о неподвижную поверхность
(см. рис 8.8а) твёрдое тело имело угловую
скорость
,
а после удара его угловая скорость
изменилась до значения
(см. рис. 8.8в).
Напомним, что по теории удара силы FiE. RiE являются немгновенными силами, и. следовательно, их действие на твёрдое тело не учитывается.
В момент удара на тело действуют ударные силы РiE, ударный импульс которых обозначим символом S(PiE) (см. рис 8.8.б). Ударные силы РiE относятся к разряду внешних сил.
Определим изменение угловой скорости тела в момент удара. Для этого воспользуемся выражением
LOX(2) – LOX(1) = ΣMOX(S(PiE)),
где LOX(1), LOX(2) – кинетические моменты тела относительно оси ОХ вращения до и после удара; ΣMOX(S(PiE)) – сумма моментов ударных импульсов относительно оси вращения тела.
Последняя формула выражает теорему об изменении кинетического момента механической системы при ударе.
Изменение кинетического момента механической системы относительно оси вращения при ударе равно сумме моментов внешних ударных импульсов, приложенных к точкам системы, относительно той же оси.
Кинетический момент твёрдого тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на модуль угловой скорости. Исходя из этого имеем,
LOX(1) = JOX·I I; LOX(1) = JOX·I I.
Тогда теорему об изменении кинетического момента механической системы относительно оси вращения при ударе можно представить в следующем виде
JOX·I I – JOX·I I = ΣMOX(S(PiE)).
Отсюда
Δφ
= I
I
– I
I
=
,
Таким образом, изменение угловой скорости твёрдого тела, вращающегося относительно неподвижной оси, под действием внешних ударных сил равно сумме моментов импульсов этих сил относительно оси вращения, разделённой относительно той же оси.
Итак, действие ударного импульса на тело, вращающегося относительно неподвижной оси, проявляется в скачкообразном изменении его угловой скорости.
Этой теоремой следует пользоваться в задачах на удар по телу, вращающемуся относительно неподвижной оси, когда в число данных и искомых величин входят: ударные импульсы; момент инерции тела относительно оси вращения; угловые скорости в начале и конце удара.
Задачи с помощью теоремы об изменении кинетического момента механической системы при ударе решают по следующему алгоритму.
Изобразить на рисунке внешние ударные импульсы.
Вычислить сумму моментов ударных импульсов относительно оси вращения.
Подставив результат вычислений, полученный в предыдущем пункте, в уравнение Δφ = I I – I I = определить искомую величину.
Приложение
