
- •Теоретическая механика
- •Введение
- •Программа дисциплины «теоретическая механика»
- •Требования
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Общие положения
- •Рекомендуется следующий порядок решения контрольных работ
- •Программа раздела «динамика»
- •1. Динамика точки
- •1.1. Введение в динамику точки
- •1.2. Основные понятия и определения
- •1.3. Основные законы механики
- •1.4. Дифференциальные уравнения движения несвободной материальной точки в декартовой системе отсчёта
- •1.5. Дифференциальные уравнения движения несвободной материальной точки в естественных координатных осях
- •1.6. Задачи динамики точки
- •1.7. Алгоритм решения первых задач динамики точки в декартовой системе отсчёта
- •1.8. Пример решения первой задачи динамики точки в декартовой системе отсчёта
- •1.9. Алгоритм решения первых задач динамики точки в естественных координатных осях
- •1.10. Пример решения первой задачи динамики точки в естественных координатных осях
- •1.11. Алгоритм решения вторых задач динамики точки в декартовой системе отсчёта
- •Варианты 6 – 10 (рис. 1.10)
- •Варианты 11 – 15 (рис. 1.11)
- •В Рис. 1.12 арианты 16 – 20 (рис. 1.12)
- •Варианты 21 – 25 (рис. 1.13)
- •Варианты 26 – 30 (рис. 1.14)
- •1.13. Пример выполнения курсового задания д 1
- •Вопросы и задания для самоконтроля
- •2. Колебательное движение точки и тела
- •2.1. Виды колебательных движений материальной точки
- •2.2. Свободные колебания материальной точки
- •2.3. Дифференциальное уравнение движения точки под действием постоянной системы сил, восстанавливающей силы и силы сопротивления движению
- •2.4. Затухающие колебания материальной точки
- •2.5. Апериодическое движение точки
- •2.6. Вынужденные колебания материальной точки под действием постоянной системы сил, восстанавливающей силы и возмущающей силы
- •2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
- •2.8. Алгоритм решения задач на колебания материальной точки
- •2.9. Пример решения задачи на свободные колебания груза по гладкой наклонной поверхности
- •Вопросы и задания для самоконтроля
- •3.2. Частные случаи относительного движения материальной точки
- •3.3. Принцип относительности классической механики. Инерциальные системы отсчёта
- •3.4. Алгоритм решения задач на динамику относительного движения материальной точки
- •3.5. Варианты курсового задания д 2 «Исследование относительного движения материальной точки»
- •3.6. Пример выполнения курсового задания д 2
- •Вопросы и задания для самоконтроля
- •4. Геометрия масс механической системы
- •4.1. Центр масс механической системы
- •4.2. Алгоритм определения кинематических характеристик центра масс механической системы
- •4.3. Моменты инерции твёрдого тела. Радиус инерции
- •Осевые моменты инерции однородных пластинок
- •Вопросы и задания для самоконтроля
- •5. Общие теоремы динамики
- •5.1. Теорема о движении центра масс механической системы
- •Следствия из теоремы о движении центра масс
- •Вопросы и задания для самоконтроля
- •5.2. Теоремы об изменении количества движения материальной точки и количества движения механической системы
- •5.2.1. Теорема об изменении количества движения
- •5.2.2. Теорема об изменении количества движения
- •Следствия из теоремы
- •Вопросы и задания для самоконтроля
- •5.3. Теоремы об изменении момента количества
- •5.3.1. Моменты количества движения
- •5.3.2. Теорема об изменении момента количества
- •Следствия из теоремы
- •5.3.3. Кинетический момент механической
- •5.3.4. Теорема об изменении кинетического
- •Следствия из теоремы
- •5.3.5. Варианты курсового задания д 3
- •5.3.6. Пример выполнения курсового задания д 3
- •Вопросы и задания для самоконтроля
- •5.4. Динамика движений твёрдого тела
- •5.4.1. Динамика поступательного движения твёрдого тела
- •5.4.2. Динамика вращательного движения твёрдого тела
- •5.4.3. Динамика плоскопараллельного движения
- •5.4.4. Динамика сферического движения твёрдого тела
- •5.4.5. Динамика общего случая движения твёрдого тела
- •Вопросы и задания для самоконтроля
- •5.5. Теорема об изменении кинетической энергии
- •5.5.1. Работа силы на перемещении точки её приложения
- •5.5.2. Кинетическая энергия механической системы
- •5.5.3. Варианты курсового задания д 4
- •5.5.4. Пример выполнения курсового задания д 4
- •Вопросы и задания для самоконтроля
- •5.6. Принцип Даламбера для материальной точки и механической системы
- •5.6.1. Принцип Даламбера для несвободной
- •5.6.2. Принцип Даламбера для несвободной
- •5.6.3. Приведение сил инерции точек твёрдого
- •5.6.4. Варианты курсового задания д 5
- •5.6.5. Пример выполнения курсового задания д 5
- •Вопросы и задания для самоконтроля
- •6. Основные начала аналитической механики
- •6.1. Обобщённые координаты и возможные перемещения тел и точек механической системы
- •6.2. Связи и их классификация. Идеальные связи
- •6.3. Принцип возможных перемещений
- •6.3.1. Варианты курсового задания д 6
- •6.3.2. Пример выполнения курсового задания д 6
- •6.3.3. Варианты курсового задания д 7
- •6.3.4. Пример выполнения курсового задания д 7
- •Вопросы и задания для самоконтроля
- •6.4. Общее уравнение динамики
- •6.4.1. Общее уравнение динамики механической системы
- •6.4.2. Варианты курсового задания д 8
- •6.4.3. Пример выполнения курсового задания д 8
- •Вопросы и задания для самоконтроля
- •6.5. Уравнения Лагранжа второго рода
- •Вопросы и задания для самоконтроля
- •7. Элементы приближённой теории гироскопов
- •7.1. Гироскоп с тремя степенями свободы
- •7.2. Гироскопический момент
- •8. Удар
- •8.1. Удар двух тел
- •8.2. Удар шара о неподвижную плоскость
- •8.3. Потеря кинетической энергии при ударе двух тел
- •8.4. Действие ударных сил на твёрдое тело, при его вращении относительно неподвижной оси
- •Словарь терминов, определений, понятий
- •Оглавление
- •Для заметок Для заметок
- •644099, Омск, ул. П. Некрасова, 10
- •644080, Омск, пр. Мира, 5
2.7. Влияние сопротивлений движению на вынужденные колебания материальной точки
Р
Рис. 2.15
Начало системы отсчёта ОY поместим в положение статического равновесия материальной точки, при котором пружина не деформирована.
Основное уравнение динамики точки для рассматриваемого случая имеет вид
m·a = ΣFiE + ΣRiE = G + Q + Rc + N + Fyn.
Необходимо отметить, что силы G, Q являются активными силами, а силы Rc, N, Fyn отнесены к разряду реакций связей. Так как силы G и N не влияют на горизонтальное движение точки, то они на рис. 2.15 не показаны.
Из предыдущего материала, изложенного в данном разделе учебно-методического пособия, известно:
Rc = – α·V; Fyn = c·Δ; Q = H·sin(p·t + δ).
С учётом этого дифференциальное уравнение горизонтального движения точки описывается равенством
m· = Σ + Σ = H·sin(p·t + δ) – α· – c·Y.
Перенеся члены α· , c·Y в левую часть равенства и разделив обе его части на массу m, получим
+ (α/m)· + (c/m)·Y = (H/m)·sin(p·t + δ),
где c/m = k2 – квадрат циклической частоты свободных колебаний; α/2m = n – коэффициент затухания; H/m = h – отношение амплитуды возмущающей силы к массе точки.
При этих обозначениях дифференциальное уравнение движения точки имеет вид
+ 2n· + k2·Y = h·sin(p·t + δ).
Последнее уравнение представляет собой дифференциальное уравнение вынужденных колебаний точки при наличии сопротивления движению, пропорционального скорости.
Общее решение этого уравнения состоит из общего решения Y* дифференциального уравнения + 2n· + k2·Y = 0 и частного решения Y**.
Таким образом, общее решение дифференциального уравнения + 2n· + k2·Y = h·sin(p·t + δ) имеет вид Y = Y*+ Y**.
Частное решение Y** выражается формулой
Y** = Ac·sin(p·t + δ – ε),
где Ас, ε – постоянные величины, не зависящие от начальных условий движения точки.
Эти постоянные называют: Ас – амплитуда вынужденных колебаний при наличии сопротивления движению; ε – сдвиг фазы.
Значения Ас и ε определяют по следующей совокупности формул:
Ac
= h/(
);
tg(ε) = 2·n·p/(k2
– p2);
sin(ε) = 2·n·p·Ac/h; cos(ε) = Ac·(k2 – p2)/h.
Общее решение дифференциального уравнения + 2n· + k2·Y = h·sin(p·t + δ)) в зависимости от соотношения величин k и n имеет вид:
при n < k Y = a·(e-nt)·sin(k*·t + β) + Ac·sin(p·t + δ – ε);
при n = k Y = (e-nt)·(C1·t + C2) + Ac·sin(p·t + δ – ε);
при
n > k Y = (e-nt)·(C1·
)·t
+ C2·
)·t)
+
+ Ac·sin(p·t + δ – ε),
где α, β, С1, С2 – постоянные интегрирования, определяемые по начальным условиям движения точки.
Н
Рис. 2.16
Н
Рис. 2.17
Таким образом, графики зависимостей Y = f3(t) на рис. 2.16, 2.17 при p > k представляют собой наложение высокочастотных вынужденных колебаний Y** = f2(t) соответственно на затухающие колебания (см. рис. 2.16) или апериодическое движение (см. рис. 2.17).