Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia_itog_1.docx
Скачиваний:
43
Добавлен:
27.01.2020
Размер:
1.36 Mб
Скачать

6. Механизм действия ферментов

Повышение скорости химических реакций под действием ферментов объясняли следующим: а) активированием субстрата в результате образования адсорбционных или молекулярных, обратимо диссоциирующих фермент-субстратных комплексов; б) цепным механизмом реакций с участием радикалов или возбужденных молекул. Оказалось, что цепные механизмы реакции не играют существенной роли в биологическом катализе.

Структура и механизм действия ферментов  Структура ферментов. По строению ферменты делятся на простые (однокомпонентные) и сложные (двухкомпонентные). Простой фермент состоит только из белковой части; в состав сложного фермента входит белковая и небелковая составляющие. Иначе сложный фермент называют холоферментом. Белковую часть в его составе называют апоферментом, а небелковую - коферментом. Химическая природа коферментов была выяснена в 30-е гг. Оказалось, что роль некоторых коферментов играют витамины или вещества, построенные с участием витаминов В1, В2, В5, В6, В12, Н, Q и др. Особенностью сложных ферментов является то, что отдельно апофермент и кофермент не обладают каталитической активностью.

Доказательства белковой природы ферментов таковы:

а) потеря активности при кипя чении;

б) денатурация при УФ и рентгеновском облучении, действии ультразвука, кислот, щелочей, тяжелых металлов;

в) гидролиз до аминокислот;

г) осаждение под действием солей (высаливание) без потери каталитических свойств;

д) высокая молекулярная масса, амфотерные свойства, способность к электрофорезу;

е) возможность искусственного синтеза из ами нокислот (впервые так была синтезирована рибонуклеаза).

Структура ферментов. Ферменты делятся на простые и сложные. Простые ферменты явля ются белками и состоят только из аминокислот (например, ферменты 3 класса гидролазы). Сложные ферменты состоят из белкового компонента (апофермента) и небелкового (кофак тора). Кофактор может быть неорганической (металлы) и органической природы и в зависи мости от прочности связи с апоферментом делятся на простетические группы (прочно, ко валентно связаны с апоферментом) и коферменты (слабо, нековалентно связаны с апофер ментом). В целом сложный фермент (апофермент + кофактор) называется холоферментом.

В составе как простого, так и сложного фермента, выделяют субстратный, аллостерический и каталитический центры.

Каталитический центр простого фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, расположенных на разных участках полипептидной цепи. Образование каталитического центра происходит одновременно с формированием третичной структуры белковой молекулы фермента. Чаще всего в состав каталитического центра простого фермента входят остатки серина, цистеина, тирозина, гистидина, аргинина, аспарагиновой и глутаминовой кислот.

Олигомерные ферменты, образованные несколькими идентичными (мышечная фосфорилаза) или различными (аспартат- карбамоилтрансфераза из E.coli) субъединицами, связанными некова- лентными связями.

Субстратный центр простого фермента - это участок белковой молекулы фермента, который отвечает за связывание субстрата. Субстратный центр образно называют "якорной площадкой", где субстрат прикрепляется к ферменту за счет различных взаимодействий между определенными боковыми радикалами аминокислотных остатков и соответствующими группами молекулы субстрата. Субстрат с ферментом связывается посредством ионных взаимодействий, водородных связей; иногда субстрат и фермент связываются ковалентно.

Гидрофобные взаимодействия также играют определенную роль при связывании субстрата с ферментом. В простых ферментах субстратный центр может совпадать с каталитическим; тогда говорят об активном центре фермента. Так, активный центр амилазы - фермента, гидролизующего α-1,4-гликозидные связи в молекуле крахмала - представлен остатками гистидина, аспарагиновой кислоты и тирозина; ацетилхолинэстеразы, гидролизующей сложноэфирные связи в молекуле ацетилхолина, остатками гистидина, серина, тирозина и глутаминовой кислоты. В активном центре карбоксипептидазы А, гидролизующей определенные пептидные связи в молекуле белка, локализованы остатки аргинина, тирозина и глутаминовой кислоты.

Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому какого-то низкомолекулярного вещества изменяется третичная структура белковой молекулы фермента, что влечет за собой изменение его активности. Аллостерический центр является регуляторным центром фермента.

В сложных ферментах роль каталитического центра выполняет кофермент, который связывается с апоферментом в определенном участке - кофермент связывающем домене. Понятия субстратного и аллостерического центров для сложного фермента и для простого аналогичны.

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.  Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. 

Мультиферментные комплексы - это объединение нескольких ферментов, катализирующих последовательные превращения субстратов корма. Каждый из ферментов, включенных в комплекс, поддерживает какую-либо специфическую сторону переваривания пищи.

Примером мультиферментов являются реакции окисли тельного декарбоксилирования αкетокислот (пирувата и αкетоглутарата) под влиянием пи руватдегидрогеназы и αкетоглутаратдегидрогеназы. Например пируватдегидрогеназный комплекс включает 3 фермента и использует 5 коферментов

7. ФЕРМЕНТЫ (энзимы), белки, выполняющие роль катализаторов в живых организмах. Основные функции ферментов- ускорять превращение веществ, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его энергией и др.), а также регулировать биохимические процессы (напр., реализацию генетич. информации), в т. ч. в ответ на изменяющиеся условия.

Классификация ферментов. Все ферменты в зависимости от типа катализируемой реакции делят на 6 классов: 1-й - оксидоредуктазы, 2-й - трансферазы, 3-й - гидролазы, 4-й - лиазы, 5-й - изомеразы и 6-й - лигазы. Каждый класс делится на подклассы, в соответствии с природой функц. групп субстратов, подвергающихся хим. превращению. Подклассы, в свою очередь, делятся на подподклассы в зависимости от типа участвующего в превращении фермента. Каждому достаточно охарактеризованному ферменту присваивается классификационный номер из 4 цифр, обозначающих класс, подкласс, подподкласс и номер самого ферменты Напр., a-химотрипсин имеет номер 3.4.21.1.

К оксидоредуктазам относятся ферменты, катализирующие окислит.-восстановит. р-ции. Ферменты этого типа переносят атомы H или электроны. Многие оксидоредуктазы являются ферментами дыхания и окислительного фосфорилирования.

Трансферазы катализируют перенос функц. групп (CH3, COOH, NH2, CHO и др.) от одной молекулы к другой.

Гидролазы катализируют гидролитич. расщепление связей (пептидной, гликозидной, эфирной, фосфодиэфирной и др·)·

Л иазы катализируют негидролитическое отщепление групп от субстрата с образованием двойной связи и обратные р-ции. Эти ферменты могут отщеплять CO2, H2O, NH3 и др.

Изомеразы катализируют образование изомеров субстрата, в т. ч. цис-, транс-изомеризацию, перемещение кратных связей, а также групп атомов внутри молекулы.

Л игазы - ферменты, катализирующие присоединение двух молекул с образованием новых связей (С — С, С — S, С — О, С — N и др.), как правило, сопряженное с расщеплением пирофос-фатной связи, напр. у АТФ.

Особенности строения ферментов. Мол. масса ферментов составляет от 104 до 1010 и более. Чаще всего встречаются ферменты с мол. м. 20-60 тыс., более крупные обычно состоят из неск. одинаковых (гомомеры) или разных (гетеромеры) субьеди-ниц, связанных между собой нековалентными связями. Субъединица может состоять из двух и более цепей, соединенных дисульфидными связями.

В первичной структуре однотипных ферментов, выделенных даже из эволюционно отдаленных организмов, часто наблюдается определенная гомология, а нек-рые участки практически остаются неизменными. Вторичная структура отличается большим разнообразием по содержанию спиралей и структур. Структуры составляют ядро многих ферментов, образуя "опорную" структуру. Совокупность стандартных элементов вторичных структур и специфически уложенных участков полипептидной цепи, определенным образом расположенных в пространстве, образует третичную структуру, определяющую биологические свойства ферментов.

Третичная структура уникальна для каждого фермента, однако у однотипных ферментов, даже сильно отличающихся по первичной структуре, пространственное расположение цепей м. б. сходным (напр., химотрипсины и субтилизины). Часто в третичной структуре можно выделить отдельные компактные части (домены), соединенные участками полипептидной цепи. Организация в пространстве неск. субъединиц определяет четвертичную структуру ферментов.

На поверхности белковой глобулы фермента или, чаще, в спец. щели, углублении и т. п. выделяют относительно небольшой участок, наз. активным центром. Он представляет собой совокупность функц. групп аминокислотных остатков, непосредственно взаимодействующих с субстратом. В активный центр фермента, кроме функц. групп, могут входить небелковые составляющие - коферменты. Такой комплекс называется холоферментом, а его белковую часть - апоферментом. Аминокислотные остатки, входящие в активный центр, относятся к наиб. консервативным в данной группе ферментов. В активном центре можно выделить субстрат-связывающий участок и собственно каталитически активные группы ферментов. К последним, напр., в подподклассе сериновых протеаз относятся функц. группы остатков серина-195, гистидина-57 и аспарагиновой к-ты-102. Кроме того, в качестве каталитически активных групп ферментов выступают группа SH цистеина, группа COOH глугаминовой к-ты, фенольный гидроксил тирозина и др., а также функц. группы коферментов - никотинамидное кольцо никотинамидных коферментов, альдегидная группа (в виде альдимина) пиридоксальфосфата, тиазолиновое кольцо тиаминпирофосфата, ионы металлов (напр., Zn2+, Co2+, Mn2+) и др.

Активирование и ингибирование ферментов

Скорость ферментативной реакции, как и активность фермента, в значительной степени определяется также присутствием в среде активаторов и ингибиторов: первые повышают скорость реакции, а вторые тормозят эту реакцию. Активирующее влияние на скорость ферментативной реакции оказывают разнообразные вещества органической и неорганической природы. Так, соляная кислота активирует действие пепсина желудочного сока; желчные кислоты повышают активность панкреатической липазы; некоторые тканевые ферменты(оксидоредуктазы, катепсины, аргиназа), растительная протеиназа и др. в значительной степени активируются соединениями, содержащими свободные SH-группы (глутатион, цистеин), а ряд ферментов – также витамином С. Особенно часто  активаторами выступают ионы двухвалентных и, реже, одновалентных металлов. Получены доказательства, что около четверти всех известных ферментов для проявления полной каталитической активности нуждаются в присутствии металлов. Многие ферменты вообще не активны в отсутствие металлов. Так, при удалении цинка угольная ангидраза (карбоангидраза), катализирующая биосинтез и распад Н2СО3, практически теряет свою ферментативную активность; Ферменты, активируемые металлами (цитохромы, каталаза, пероксидаза, триптофаноксидаза, гомогентизиказа, аскорбатоксидаза, тирозиназа, фенолоксидаза, ксантиноксидаза, нитратредуктаза, альдегидоксидаза, амилаза, липаза, карбоангидраза, уриказа и т.д.)

Молекулярный механизм действия металлов в энзиматическом катализе, или роль металлов в активировании ферментами. 

В ряде случаев ионы металлов (Со2+, Mg2+, Zn2+, Fe2+) выполняют функции простетических групп ферментов, или служат акцепторами и донаторами электронов, или выступают в качестве электрофилов либо нуклеофилов, сохраняя реактивные группы в необходимой ориентации. В других случаях они способствуют присоединению субстрата к активному центру и образованию фермент-субстратного комплекса. Например, ионы Mg2+через отрицательно заряженную фосфатную группу обеспечивают присоединение монофосфатных эфиров органических веществ к активному центру фосфатаз, катализирующих гидролиз этих соединений. Иногда металл соединяется с субстратом, образуя истинныйсубстрат, на который действует фермент. В частности, ионы Mg2+активируют креатинфосфокиназу благодаря образованию истинного субстрата – магниевой соли АТФ. Наконец, имеются экспериментальные доказательства прямого участия металлов (например, ионов Са2+  в молекуле амилазы  слюны) в формировании и стабилизации активного центра и всей трехмерной структуры молекулы фермента. Следует отметить также, что металлы нередко выступают в роли аллостерических модуляторов (эффекторов). Взаимодействуя с аллостерическим центром, подобный металл (эффектор) способствует образованию наиболее выгодной пространственной конфигурации фермента и активного фермент-субстратного комплекса.

Ингибиторы ферментов обычно принято делить на два больших класса: обратимые и необратимые. Это вещества, вызывающие частичное (обратимое) или полное торможение реакций, катализируемых ферментами.

При помощи ингибиторов, выключающих отдельные стадии многоступенчатого метаболического процесса, могут быть точно установлены не только последовательность  химических реакций, но и природа участвующих в этих превращениях ферментов. Этим путем, применяя йодацетат, фториды и другие специфические ингибиторы, был расшифрован гликолитический путь окислительно-восстановительных превращений  глюкозы до стадии образования молочной кислоты в мышечной ткани, насчитывающий 11 стадий с участием 11 ферментов и 10 промежуточных метаболитов.

С ингибированием ферментов связан механизм действия многих токсинов и ядов на организм. Известно, что при отравлениях солями синильной кислоты смерть наступает вследствие полного торможения и выключения дыхательных ферментов (цитохромная система) тканей, особенно клеток мозга. Токсическое влияние на организм человека и животных некоторых инсектицидов обусловлено торможением активности холинэстеразы – фермента, играющего ключевую роль в деятельности нервной системы.

Типы ингибирования. Различают обратимое и необратимое ингибирование. Если ингибитор вызывает стойкие изменения пространственной третичной структуры  молекулы фермента или модификацию функциональных групп фермента, то такой тип ингибирования называется необратимым. Чаще, однако, имеет место обратимое ингибирование, поддающееся количественному изучению на основе уравнения Михаэлиса-Ментен. Обратимое ингибирование в свою очередь разделяют на конкурентное и неконкурентное в зависимости от того, удается или не удается преодолеть торможение ферментативной реакции путем увеличения концентрации субстрата.

Конкурентное ингибирование может быть вызвано веществами, имеющими структуру, похожую на структурусубстрата, но несколько отличающуюся от структуры истинного  субстрата. Такое ингибирование основано на связывании ингибитора с субстратсвязывающим (активным) центром. Классическим примером подобного типа ингибирования является торможение сукцинатдегидрогеназы (СДГ) малоновой кислотой. Этот фермент катализирует окисление путем дегидрирования янтарной кислоты (сукцината) в фумаровую:

Если в среду добавить малонат (ингибитор), то в результате структурного сходства его с истинным субстратомсукцинатом (наличие двух таких же ионизированных карбоксильных групп) он будет взаимодействовать сактивным центром с образованием фермент-ингибиторного комплекса, однако при этом полностью исключается перенос атома водорода от малоната. Структуры субстрата (сукцинат) и ингибитора (малонат) все же несколько различаются. Поэтому они конкурируют за связывание с активным центром, и степень торможения будет определяться соотношением концентраций малоната и сукцината, а не абсолютнойконцентрацией ингибитора. Таким образом, ингибитор может обратимо связываться с ферментом, образуя фермент-ингибиторный комплекс. Этот тип ингиби-рования иногда называют ингибированием по типу метаболического антагонизма

Коферменты, характеристика, связь с витаминами.

Коферменты — это органические вещества, как правило, аминокислотной природы, непосредственно участвующие в катализе в составе фермента. Простые, относятся обычно к классу гидролаз, практически все гидролитические ферменты состоят только из аминокислот, т.е. являются простыми белками. Кроме того, некоторые лиазы, а вот все остальные классы ферментов в основном явл. сложными белками, т.е. для каталитической активности многих ферментов кроме белковой части необходим второй компонент получивший название кофактор. Есть каталитически активный фермент вместе с кофактором получил название холофермент. Это каталитически активный фермент, состоящий из белковой и небелковой части кофактора. Белковая часть холофермента получила название апофермент.

Характерной особенностью холофермента или сложных ферментов протеидов является, то, что ни белковая часть апофермента, ни кофактор в отдельности не обладают заметной каталитической активностью. Какую же роль выполняют тот и другой?

К коферментам относят следующие соединения:

  •  производные витаминов;

  •  гемы, входящие в состав цитохромов, каталазы, пероксидазы, гуанилатциклазы, NO-синтазы и являющиеся простетической группой ферментов;

  •  нуклеотиды - доноры и акцепторы остатка фосфорной кислоты;

  •  убихинон, или кофермент Q, участвующий в переносе электронов и протонов в ЦПЭ;

  •  фосфоаденозилфосфосульфат, участвующий в переносе сульфата;

  •  S-аденозилметионин (SAM) - донор метильной группы;

  •  глутатион, участвующий в окислительно-восстановительных реакциях.

Оказывается апофермент резко повышает каталитическую активность кофактора, а кофактор в свою очередь стабилизирует белковую часть, делает ее более устойчивой и менее уязвимой к денатурирующим агентам. Поэтому встает вопрос, что и какие вещества явл. кофакторами?

коферменты низкомолекулярные органические соединения небелковой природы которые нужны для проявления ферментативной активности

Кофакторы

Более 25% всех ферментов для проявления полной каталитической активности нуждается в ионах металлов. Рассмотрим роль кофакторов в ферментативном катализе.