Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia_itog_1.docx
Скачиваний:
43
Добавлен:
27.01.2020
Размер:
1.36 Mб
Скачать

Основная роль цтк заключается в

  • генерации атомов водорода для работы дыхательной цепи, а именно трех молекул НАДН и одной молекулы ФАДН2.

Кроме этого, в ЦТК образуется

  • одна молекула ГТФ, которая равнозначна АТФ,

  • сукцинил-SКоА, участвующий в синтезе гема,

  • кетокислоты, являющиеся аналогами аминокислот – α-кетоглутарат для глутаминовой кислоты, оксалоацетат для аспарагиновой.

  • Тканевое дыхание, клеточное дыхание, совокупность ферментативных процессов, протекающих при участии кислорода воздуха в клетках органов и тканей, в результате

  • Схема превращения энергии в живых клетках: тканевое дыхание, образование АТФ и пути его использования.

  • чего продукты расщепления углеводов, жиров, белков окисляются до углекислого газа и воды, а значит, часть освобождающейся энергии запасается в форме богатых энергией, или макроэргических соединений. Тканевое дыхание отличают от внешнего дыхания — совокупности физиологических процессов, обеспечивающих поступление в организм кислорода и выведение из него углекислого газа. Многие ферменты, катализирующие эти реакции, находятся в особых клеточных органоидах — митохондриях.

  • На все проявления жизни — рост, движение, раздражимость, самовоспроизведение и др. — организм расходует энергию. Формой энергии, пригодной для использования клетками, является энергия химических связей (главным образом фосфатных) в макроэргических соединениях — аденозинтрифосфорной кислоте (АТФ) и др. Для синтеза АТФ необходим приток энергии извне. По способам извлечения энергии существует принципиальное различие между автотрофными организмами и гетеротрофными организмами. Клетки зелёных растений — наиболее типичных автотрофов — в процессе фотосинтеза используют энергию солнечного света для синтеза АТФ и глюкозы. (Образование из глюкозы более сложных молекул происходит в клетках растений также в процессе Тканевое дыхание) В клетках гетеротрофов — животных и человека — единственным источником энергии является энергия химических связей молекул пищевых веществ. Молекулы различных соединений, выполняющие роль биологического «топлива» (глюкоза, жирные кислоты, некоторые аминокислоты), образовавшись в клетках животного организма или поступив в кровь из пищеварительного тракта, претерпевают ряд последовательных химических превращений. В процессе Тканевое дыхание можно наметить три основные стадии: 1) окислительное образование ацетилкофермента А (активная форма уксусной кислоты) из пировиноградной кислоты (промежуточный продукт расщепления глюкозы), жирных кислот и аминокислот; 2) разрушение ацетильных остатков в трикарбоновых кислот цикле с освобождением 2 молекул углекислого газа и 4 пар атомов водорода, частично акцептируемых коферментами никотинамидадениндинуклеотидом и флавинадениндинуклеотидом и частично переходящих в раствор в виде протонов; 3) перенос электронов и протонов к молекулярному кислороду (образование H2O) — процесс, катализируемый набором дыхательных ферментов и сопряжённый с образованием АТФ (так называемое окислительное фосфорилирование). Первые две стадии подготавливают третью, в ходе которой в результате последовательных окислительно-восстановительных реакций происходит освобождение основной части энергии, вырабатываемой в клетке. При этом около 50% энергии в результате окислительного фосфорилирования запасается в форме богатых энергией связей АТФ, а остальная часть её выделяется в виде тепла.

  • Тканевое дыхание обеспечивает образование и постоянное пополнение АТФ в клетках. В случае недостатка в снабжении клеток животных и человека кислородом запасы АТФ не исчерпываются сразу. Их пополнение может происходить в результате включения дополнительных механизмов — систем анаэробного (без участия кислорода) распада углеводов — гликолиза и гликогенолиза. Однако этот путь энергетически во много раз менее эффективен и не может обеспечить функции и целостность структуры органов и тканей. Биологическая роль Тканевое дыхание не исчерпывается существенным вкладом в энергетический обмен организма. На различных его этапах образуются молекулы органических соединений, используемых клетками в качестве промежуточных продуктов для различных биосинтезов. См. также Аденозинфосфорные кислоты, Биоэнергетика, Обмен веществ, Окисление биологическое.

Цепь тканевого дыхания

1) Цепь тканевого дыхания: общая характеристика, биологическая значение, организация. Компоненты дыхательной цепи во внутренней мембране михохондрий формируют комплексы:

I комплекс(НАДН-КоQН2-редуктаза) – принимает электороны от митохондриального НАДН и транспортирует их на КоQ. Протоны транспортируются в межмембранное пространство. Промежуточным акцептором и переносчиком протонов и электронов являются ФМН и железосерные белки.Iкомплекс разделяет поток электронов и протонов.

II комплекс–сукцинат – КоQ - редуктаза – включает ФАД- зависимые дегидрогеназы и железосерные белки. Он транспортирует электроны и протоны от флавинзависимых субстратов на убихинон, с образованием промежуточного ФАДН2.

Убихинон легко перемещается по мембране и передает электроны на IIIкомплекс.

III комплекс–КоQН2 - цитохром с - редуктаза– имеет в своем составе цитохромыbи с1, а также железосерные белки. Функционирование КоQсIIIкомплексом приводит к разделению потока протонов и электронов: протоны из матрикса перекачиваются в межмембранное пространство митохондрий, а электроны транспортируются далее по ЦТД.

IV комплекс–цитохром а - цитохромоксидаза– содержит цитохромоксидазу и транспортирует электроны на кислород с промежуточного переносчика цитохрома с, который является подвижным компонентом цепи.

Существует 2 разновидности ЦТД:

Полная цепь– в нее вступают пиридинзависимые субстраты и предают атомы водорода на НАД-зависимые дегидрогеназы

Неполная (укороченная или редуцированная) ЦТДв которой атомы водорода передаются от ФАД-зависимых субстратов, в обход первого комплекса. Это процесс потребление клетками тканей организма кислорода, который участвует в биологическом окислении. Такой вид окисления называют аэробным окислением. Если конечным акцептором в цепи переноса водорода выступает не кислород, а другие вещества (например пировиноградная кислота), то такой тип окисления называют анаэробным.

 

Т.о. биологическое окисление - это дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора.

 

Дыхательная цепь (ферменты тканевого дыхания) - это переносчики протонов и электронов от окисляемого субстрата на кислород. Окислитель - это соединение, способное принимать электроны. Такая способность количественно характеризуется окислительно-восстановительным потенциалом по отношению к стандартному водородному электроду, рН которого равен 7,0. Чем меньше потенциал соединения, тем сильнее его восстанавливающие свойства и наоборот.

Т. о. любое соединение может отдавать электроны только соединению с более высоким окислительно-восстановительным потенциалом. В дыхательной цепи каждое последующее звено имеет более высокий потенциал, чем предыдущее.

 

Дыхательная цепь состоит из:

 

1.      НАД - зависимой дегидрогеназы;

2.      ФАД- зависимой дегидрогеназы;

3.      Убихинона (КоQ);

4.      Цитохрмов b, c, a+a3 .

 

НАД-зависимые дегидрогеназы. В качестве кофермента содержат НАД и НАДФ. Пиридиновое кольцо никотинамида способно присоединять электроны и протоны водорода.

 

ФАД и ФМН-зависимые дегидрогеназы содержат в качестве кофермента фосфорный эфир витамина В2 (ФАД).

 

Убихинон (КоQ) отнимает водород у флавопротеидов и превращается при этом в гидрохинон.

 

Цитохромы - белки хромопротеиды, способные присоединять электроны, благодаря наличию в своем составе в качестве простетических групп железопорфиринов. Они принимают электрон от вещества, являющегося немного боле сильным восстановителем, и передают его более сильному окислителю. Атом железа связан с атомом азота имидазольного кольца аминоксилоты гистидина с одной стороны от плоскости порфиринового цикла, а с другой стороны с атомом серы метионина. Поэтому потенциальная способность атома железа в цитохромах к связыванию кислорода подавлена.

 

В цитохроме с порфириновая плоскость ковалентно связана с белком через два остатка цистеина, а в цитохромах b и а, она ковалентно не связано с белком.

 

В цитохроме а+а3 (цитохромоксидазе) вместо протопорфирина содержатся порфирин А, который отличатся рядом структурных особенностей. Пятое координационное положение железа занято аминогруппой, принадлежащей остатку аминосахара, входящего в состав самого белка.

 

В отличии от гема гемолгобина атом железа в цитохромах может обратимо переходить из двух в трехвалентное состояние  это обеспечивает транспорт электронов (См. подробнее приложение 1 "Атомная и электронная структура гемопротеинов ").

 2) Пиридинзависимые дегидрогеназы. Структура НАД и НАДФ, их участие в окислительно-восстановительных реакциях. НАД-зависимые дегидрогеназы

В реакциях, катализируемых этими ферментами, в качестве кофермента участвует НАД.

НАД-зависимые дегидрогеназы катализируют реакции окисления веществ путем дегидрирования; при этом окисляемое вещество служит донором водорода (DH2), а НАД выполняет роль акцептора водорода, т.е. восстанавливается. Остаток никотинамида в молекуле НАД принимает непосредственное участие в реакции.

3. Макроэргические соединения — группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии. Разрыв макроэргических связей в молекулах М.с. сопровождается выделением энергии, используемой для биосинтеза и транспорта веществ, мышечного сокращения, пищеварения и других процессов жизнедеятельности организма.

    Все известные М.с. содержат фосфорильную (—РО3Н2) или ацильную

 группы и могут быть описаны формулой Х—Y, где Х — атом азота, кислорода, серы или углерода, а Y — атом фосфора или углерода. Реакционная способность М.с. связана с повышенным сродством к электрону атома Y, что обусловливает высокую свободную энергию гидролиза М.с., составляющую 6—14 ккал/моль.

    Важной группой соединений, в которую входят М.с., являются аденозинфосфорные, или адениловые, кислоты — нуклеозиды, содержащие аденин, рибозу и остатки фосфорной кислоты (см. рис.).

    Наиболее значительное из них — аденозинтрифосфорная кислота (аденозинтрифосфат, АТФ).

    АТФ представляет собой аденозинфосфорную кислоту, содержащую 3 остатка фосфорной кислоты (или фосфатных остатка), служит универсальным переносчиком и основным аккумулятором химической энергии в живых клетках, кофермент многих ферментов. АТФ не единственное биологически активное соединение, содержащее пирофосфатные связи. Некоторые фосфорилированные соединения по количеству энергии, заключенной в таких связях, не отличаются от АТФ. Однако дифосфаты таких соединений не могут заменить аденозиндифосфорную кислоту в тех процессах, которые ведут к синтезу АТФ, а их трифосфаты не могут заменить АТФ в последующих процессах энергетического обмена, в которых АТФ используется как донор энергии, необходимой для протекания биосинтетических реакций. Возможно, что такая высокая степень специфичности отражает не столько уникальность АТФ, сколько уникальные особенности биохимических процессов, приспособленных исключительно к АТФ.

    В отдельных биосинтетических реакциях непосредственным источником энергии служат не АТФ, а некоторые другие трифосфонуклеотиды. Однако их нельзя считать первичным источником энергии, поскольку сами они образуются в результате переноса фосфатной или пирофосфатной группы от АТФ. Это справедливо и для вещества другого типа, приспособленного для запасания энергии, — креатинфосфат. Макроэргическими в молекуле АТФ являются две пирофосфатные связи: между - и - и между - и -фосфатными остатками. При гидролизе концевой пирофосфатной связи освобождается 8,4 ккал/моль (при рН 7,0, температуре 37°, избытке ионов Mg2+ и концентрации АТФ, равной 1 М). Все процессы в организме, сопровождающиеся накоплением энергии, в конечном счете ведут к образованию АТФ,

который выполняет роль связующего звена между процессами, протекающими с потреблением энергии, и процессами, сопровождающимися выделением и накоплением энергии.

    Отщепление фосфатных остатков от молекул АТФ происходит при участии аденозинтрифосфатаз (АТФ-аз) — ферментов класса гидролаз, широко распространенных в клетках всех организмов и обеспечивающих использование энергии АТФ для осуществления различных процессов жизнедеятельности. Группа транспортных АТФ-аз осуществляет активный перенос ионов, аминокислот, нуклеотидов, Сахаров и других веществ через биологические мембраны, создание и поддержание градиентов концентраций ионов (ионных градиентов) по обе стороны биологических мембран. Активный транспорт ионов, обеспечиваемый за счет энергии гидролиза АТФ, лежит в основе биоэнергетики клетки, процессов клеточного возбуждения, поступления в клетку и выведения веществ из клетки и организма, К важнейшим транспортным АТФ-азам, обеспечивающим перенос ионов при гидролизе АТФ, относятся Н+ — АТФ-аза мембран митохондрий, хлоропластов и бактериальных клеток, Са2+ — АТФ-аза внутриклеточных мембран мышечных клеток и эритроцитов, а также содержащаяся практически во всех плазматических мембранах Na+, К+АТФ-аза. В результате осуществляемого этими ферментами транспорта ионов против градиента их концентраций на мембране генерируется разность электрических потенциалов. Нарушение функционирования транспортных АТФ-аз (например, выключение АТФ-аз в условиях гипоксии в отсутствие АТФ) ведет к развитию многих патологических состояний. Известны лекарственные средства (например, сердечные гликозиды), регулирующие активность этих ферментов.

    Расщепление АТФ может сопровождаться не только переносом фосфорильной группы на молекулу-акцептор, как это происходит в реакциях, катализируемых киназами, но и переносом пирофосфатной группы (например, при синтезе пуринов), остатка адениловой кислоты (при активации аминокислот в процессе синтеза белка) или аденозина (биосинтез S-аденозилметионина).

    АТФ образуется из аденозиндифосфорной кислоты (АДФ) в результате окислительного фосфорилирования при переносе электронов в митохондриальной электронпереносящей цепи или в результате фосфорилирования на уровне субстрата. Содержание АТФ в клетке непосредственно связано с содержанием других аденозинфосфорных кислот — АДФ и адениловой кислоты (АМФ), образующих систему адениловых нуклеотидов клетки. Суммарная концентрация адениловых нуклеотидов в клетке равна 2—15 мМ, что составляет приблизительно 87% общего фонда свободных нуклеотидов. Существенную роль в поддержании равновесия между аденозинфосфорными кислотами играет обратимая и практически равновесная реакция, катализируемая ферментом аденилаткиназой (аденилаткиназу мышечной ткани называют миокиназой): АТФ + АМФ = 2 АДФ.

    Важным макроэргическим соединением, участвующим в ресинтезе АТФ в мышечной ткани, является содержащийся в скелетных мышцах всех позвоночных животных креатин-фосфат — фосфорилированное производное креатина, или -метилгуанидинуксусной кислоты. Обратимое ферментативное взаимодействие креатина с АТФ: креатин + АТФ = креатинфосфат + АДФ, катализируемое креатинкиназой (креатинфосфокиназой), играет существенную роль в аккумуляции энергии, необходимой для мышечного сокращения.

    Наряду с АТФ к макроэргическим соединениям относятся и другие нуклеозидтрифосфорные кислоты: гуанозинтрифосфат (ГТФ), уридинтрифосфат (УТФ), инозинтрифосфат (ИТФ) и тимидинтрифосфат (ТТФ), играющие роль поставщиков энергии в различных биосинтетических процессах и взаимопревращениях углеводов, липидов, а также соответствующие нуклеозиддифосфорные кислоты, пирофосфорная и полифосфорная кислоты, фосфоенолпировиноградная и 1,3-дифосфоглицериновая кислоты, ацетил- и сукцинилкофермент А, аминоацильные производные адениловой и рибонуклеиновых кислот и др.

Энергетический эффект ЦТК4 стадия – НАДН2+ ->дых. цепь-> 3 АТФ; 6, 7 стадии - НАДН2+ ->дых. цепь-> 3 АТФ и ГТФ ->дых. цепь-> 1 АТФ; 8 стадия - ФАДН2 ->дых. цепь-> 2 АТФ; 10 стадия - НАДН2+ ->дых. цепь-> 3 АТФ. Сумма: 12 АТФ. Но т.к. цикл идет 2 раза сумма – 24 АТФ.

ЦТК – биологическая роль и значение

Окислительное декарбоксилирование ПВК и ЦТК – общие пути катаболизма. Хар-ы для катаболизма углеводов, липидов и белков. В процессе ЦТК и декарбоксилирования ПВК доступная энергия аккумулируется в восстановит.эквивалентах (НАДН2+ и ФАДН2), кот.окисляются в дых.цепи, образуя АТФ. ЦТК связывает между собой обмен углеводов, липидов и белков, т.к. промежут.метаболит – активированный ацетил СН3-СО-SkoА.