- •Раздел IV. Цифровые технологии формных процессов 354
- •Глава 10. Цифровые технологии изготовления форм 378
- •Раздел I. Печатные формы различных видов и способов печати
- •Глава 1. Современные виды и способы печати 1.1. Классические виды и способы печати
- •1.2. Специальные виды и способы печати
- •1.3. Цифровые способы печати
- •Глава 2. Основные сведения о печатных формах
- •2.1. Классификация печатных форм и методы их записи
- •2.2. Показатели печатных форм
- •2,3. Особенности получения оттисков с форм различных способов печати
- •Раздел II. Физико-химические основы копировальных процессов формного производства
- •Глава 3. Сущность фотохимических процессов копирования
- •3.1. Общие представления о копировальном процессе 3.1.1. Копировальный процесс и его назначение
- •3.1.2. Сведения о копировальных слоях
- •3.2. Физико-химические изменения в копировальных слоях при световом воздействии
- •3.2.1. Общие сведения
- •3.2.2. Фотохимические процессы в негативных слоях
- •Глава 4. Основные свойства копировальных слоев и методы их определения
- •4.1. Сенситометрические свойства 4.1.1. Интегральная светочувствительность
- •4.2.3. Факторы, влияющие на репродукционно-графические свойства
- •4.3. Технологические свойства 4.3.1. Проявляемость
- •Глава 5. Фотоформы, формные пластины и формное оборудование
- •5.1. Фотоформы для высокой и плоской офсетной печати
- •5.1.1. Разновидности фотоформ
- •5.2. Формные пластины для высокой и плоской офсетной печати
- •5.2.1. Основные разновидности и строение формных пластин
- •Раздел III. Аналоговые технологии изготовления печатных форм
- •Глава 6. Формы плоской офсетной печати с увлажнением пробельных элементов
- •6.1. Развитие формных процессов плоской офсетной печати
- •6.2. Основы формирования печатающих и пробельных элементов
- •6.2.1. Физико-химические закономерности смачивания печатающих и пробельных элементов
- •Раздел IV. Цифровые технологии формных процессов 354
- •Глава 9. Общие сведения о цифровых технологиях 354
- •Глава 10. Цифровые технологии изготовления форм 378
- •6.3. Технология изготовления монометаллических форм копированием
- •6.3.1. Монометаллические формные пластины
- •6.3.2. Аналоговые тестовые шкалы и тест-объекты для контроля формного процесса
- •6.3.3. Экспонирование с позитивных и негативных фотоформ
- •Глава 7. Формы плоской офсетной печати, не требующие увлажнения пробельных элементов
- •7.1. Общие сведения
- •7.1.1. Недостатки плоской офсетной печати с увлажнением печатных форм
- •7.2. Строение печатных форм, не требующих увлажнения,
- •7.2.1. Разновидности печатных форм без увлажнения пробельных элементов
- •7.2.2. Физико-химическая сущность формирования печатающих
- •Глава 8. Формы высокой печати 8.1. Развитие формных процессов высокой печати
- •8.1.1. Разновидности, структура и схемы изготовления печатных форм
- •8.2. Основы формирования печатающих и пробельных элементов
- •8.2.1. Формирование печатающих элементов фотополимерных форм
- •8.2.2. Формирование пробельных элементов фотополимерных форм
- •8.2.3. Формирование печатающих и пробельных элементов
- •8.3. Технология изготовления флексографских
- •8.3.2. Экспонирование оборотной стороны пластины
- •8.3.3. Основное экспонирование через фотоформу
- •8.3.4. Удаление незаполимеризованной композиции
- •8.3.6. Заключительные операции
- •8.3.7. Особенности изготовления форм из жидкой фотополимеризуемой композиции
- •8.4. Особенности технологии изготовления типографских
- •Раздел IV. Цифровые технологии формных процессов
- •Глава 9. Общие сведения о цифровых технологиях формных процессов
- •9.1. Основные понятия 9.1.1. Преимущества цифровых технологий формных процессов
- •9.1.2. Основные разновидности цифровых технологий
- •9*1.3. Лазерное излучение и лазеры
- •9.2. Лазерная запись информации на формные материалы
- •9.2.1. Процессы, протекающие при лазерной записи информации на формные материалы
- •9.2.3. Электронная версия печатной формы и требования к ней
- •Глава 10. Цифровые технологии изготовления форм плоской офсетной печати
- •10.1. Развитие формных технологий плоской офсетной печати
- •10.1.1. Разновидности технологий и общие схемы изготовления печатных форм
- •10.1.2. Краткие сведения из истории формных процессов с использованием поэлементной записи информации
- •10.2. Основы формирования печатающих и пробельных элементов
- •10.2.1. Формирование печатающих и пробельных элементов при световом лазерном воздействии
- •10.2.2. Формирование печатающих и пробельных элементов
- •10.3. Техническое оснащение процесса
- •10.3.1. Формные пластины для цифровых технологий
- •10.3.2. Лазерные экспонирующие устройства
- •10.3.3. Цифровые тест-объекты для контроля формного процесса
- •10.3.4. Лазерное экспонирование формных пластин различных типов
- •10.3.5. Особенности цифровой технологии записи информации
- •10.3.6. Обработка экспонированных формных пластин
- •10.3.7. Контроль печатных форм
- •10.3.8. Особенности технологии изготовления форм, не требующих увлажнения пробельных элементов
- •10.3.9. Особенности технологии изготовления форм
- •Глава 11. Цифровые технологии изготовления флексографских печатных форм
- •11.1. Развитие формных технологий флексографской печати
- •11.1.2. Схемы изготовления форм по цифровым технологиям
- •11.2. Основы формирования печатающих и пробельных элементов
- •11.2.1. Фотополимерные печатные формы
- •11.2.2. Эластомерные и полимерные формы
- •11.3.1. Особенности фотополимеризуемых формных пластин
- •11.3.3. Цифровые тест-объекты и методы контроля
- •11.3.4. Запись информации на масочный слой
- •11.3.5. Последующие операции технологического процесса
- •11.4. Особенности технологии изготовления цилиндрических фотополимерных форм
- •11.5. Технология изготовления эластомерных и полимерных форм лазерным гравированием
- •11.5.1. Цилиндрические эластомерные формы
- •11.5.2. Цилиндрические и пластинчатые полимерные формы
- •Глава 12. Цифровые технологии изготовления форм
- •12.2. Основы формирования печатающих и пробельных элементов
- •12.2.1. Формы, изготовленные электронно-механическим гравированием
- •12.2.2. Формы, изготовленные лазерным гравированием
- •12.2.3. Формы, изготовленные по масочной технологии с последующим травлением медного покрытия формного цилиндра
- •12.3. Технология изготовления форм электронно-механическим гравированием
- •12.3.1. Подготовка формных цилиндров
- •12.3.2. Гравировальные устройства
- •12.3.3. Технология электронно-механического гравирования
- •12.4. Лазерные технологии изготовления форм
6.2. Основы формирования печатающих и пробельных элементов
6.2.1. Физико-химические закономерности смачивания печатающих и пробельных элементов
В процессе печатания избирательное смачивание печатающих и пробельных элементов форм плоской печати основано на физико- химических закономерностях смачивания твердых поверхностей жидкостями. Смачивание или несмачивание твердой поверхности жидкостью определяется соотношением сил притяжения жидкости к
твердому телу (силами адгезии) и сил взаимного притяжения между молекулами самой жидкости (силами когезии).
Взаимодействие жидкости и твердого тела характеризуется работой адгезии fVa, т. е. работой, которую необходимо затратить для
отделения жидкости от твердого тела. Работа адгезии может быть определена как разность энергетических характеристик конечного состояния, при котором присутствуют две поверхности с о тг и о жг, и начального состояния, при котором жидкость находится на поверхности твердого тела о Соотношение сил поверхностного натяжения на границе раздела фаз: твердое тело, жидкость, газ (воздух) определяет смачиваемость твердой поверхности (см. § 4.3.3). Очевидно, что чем сильнее взаимодействие жидкости и твердого тела, тем больше работа адгезии и тем сильнее (при прочих равных условиях) смачивание. Работа адгезии определяется из соотношения
\1/ \1/ ^ 82
н 4conh2 66
сн = сн - соон —^ <Г> - сн - снсоон 68
<2>-СН-СНС00Н 68
w=c=0 Од"соон 84
з-Е I 199
я 249
/6 Ґ 277
Ф Ф Ф Ф 304
Раздел IV. Цифровые технологии формных процессов 354
Глава 9. Общие сведения о цифровых технологиях 354
формных процессов 354
Глава 10. Цифровые технологии изготовления форм 378
плоской офсетной печати 378
\АААААД^4 395
кххххх* 397
1Ш 447
1ШШ 447
ЖЮ TXPCJ \ 480
Из уравнений (6.2) и (6.3) следует
l + cos0 2
Полученное уравнение характеризует соотношение между краевым углом смачивания твердой поверхности и работой адгезии.
В процессе печатания поверхность формы контактирует одновременно с двумя разными по полярности жидкостями. Для того, чтобы пробельные элементы смачивались полярной жидкостью — увлажняющим раствором, они должны быть гидрофильны. Если б = 20-30°, то пробельные элементы устойчиво противостоят смачиванию неполярной краской. Печатающие элементы должны быть гидрофобны — красковосприимчивы (0 = 115-145°).
6.2.2. Формирование печатающих элементов
Основной задачей аналоговых технологий изготовления форм плоской офсетной печати является перенос графической информации с фотоформ или РОМ на светочувствительные формные пластины и формирование на них печатающих и пробельных элементов с необходимыми технологическими показателями. При оптимальных характеристиках фотоформ и РОМ эти показатели зависят от структуры и строения формных пластин и их свойств, режимов экспонирования и последующей обработки. Физико-химическая сущность формирования печатающих элементов различных типов форм имеет свои особенности.
Монометаллические формы. Создание гидрофобных пленок может осуществляться, как при изготовлении формной пластины, так и в процессе изготовления печатной формы. Это определяется полярностью копировального слоя. Задачей экспонирования является сохранение или приобретение копировальным слоем гидрофобных свойств для того, чтобы на поверхности металла сформировались устойчивые печатающие элементы. Причем, последующая обработка копии не должна нарушать созданную гидрофобную адсорбционную пленку.
На формах, изготовленных позитивным копированием, гидрофобной пленкой, служащей основой будущих печатающих элементов, является гидрофобный копировальный слой. Формирование этой пленки происходит в процессе изготовления формной пластины. Копировальный слой, сформированный на поверхности подложки за счет физической адсорбции, удерживается прочнее,
если хорошо развита поверхность металла. Сохранение гидрофобных свойств слоя на печатающих элементах достигается защитой их от светового воздействия при экспонировании и минимизацией химического и механического воздействия на них при последующей обработке копии.
На формах, изготовленных негативным копированием на пластинах с негативным копировальным слоем, печатающие элементы формируются в процессе экспонирования, когда участки гидрофобного копировального слоя, соответствующие будущим печатающим
элементам, подвергаются воздействию светового излучения.
Формы, изготовленные прямым фотографированием. Сущность формирования печатающих элементов на серебросодержащих формных пластинах заключается в следующем (см. рис. 6.2): на неэкспонированных участках слоя под действием растворителя галоге- нида серебра (тиосульфата натрия), происходит образование серебряных комплексов (серебрянотиосульфатного комплекса):
2-
AgBr
+
2S20
O
o-
II
-> 2Ag+ I I +4S20,2~
o
II
o-
Являясь олеофильным, это серебро выполняет функции печатающих элементов. Олеофильность печатающих элементов может быть дополнительно повышена использованием гидрофобизаторов, входящих в состав обрабатывающего раствора.
Печатающие элементы на формных пластинах с электрофотографическим слоем формируются на его поверхности в результате экспонирования, проявления (визуализации) и термообработки (см. рис. 6.3). В процессе термической обработки тонера образуются свободные радикалы, которые инициируют полимеризацию ЭФС, создавая прочную гидрофобную адсорбционную пленку на поверхности.
6.2.3. Формирование пробельных элементов
Монометаллические формы. Формирование пробельных элементов связано с наличием на алюминиевой поверхности подложки гидрофильного слоя, представляющего собой пленку минеральных солей или окислов и гидрофильных полимеров. Гидрофильные пленки, необходимые для формирования пробельных элементов на алюминии, получаются на стадии изготовления формных пластин.
Образование гидрофильной оксидной пленки происходит при анодной обработке поверхности алюминиевой основы (в растворах серной, ортофосфорной, щавелевой кислот или их смесей). В результате такой обработки на алюминии образуется мелкопористый гидрофильный слой, состоящий из гидратированной окиси с внедренными в нее примесями фосфатов и серы, что дополнительно повышает гидрофильность пленки. Области оксидных пленок, граничащие с металлом, состоят из чистых дегидратированных оксидов, в то время как внешний слой содержит анионные остатки и сильно гидратирован.
По своему морфологическому строению оксидные пленки являются пористыми, так как помимо тонкого барьерного слоя они имеют также толстый (1-1,5 мкм) пористый слой из губчатого оксида
алюминия, обладающего развитой поверхностью. Последующее наполнение оксидной пленки уменьшает ее пористость и дополнительно улучшает гидрофильность. Такая оксидная пленка алюминия обладает повышенным сродством к воде и хорошо смачивается увлажняющим раствором. Созданные на поверхности алюминия гидрофильные пленки на готовых печатных формах служат пробельными элементами. Наличие на поверхности формы гидрофильного коллоида способствует созданию плотного защитного адсорбционного слоя на поверхности пробельных элементов, который препятствует их разрушению.
Формы, изготовленные прямым фотографированием. Пробельные элементы форм, изготовленных на серебросодер- жащих пластинах с диффузионным переносом комплексов серебра (см. рис. 6.2), образуются следующим образом. В результате экспонирования, сопровождаемого образованием скрытого изображения в слое 4, на экспонированных участках при химическом проявлении происходит восстановление галогенида серебра до металлического. В качестве проявляющих веществ могут использоваться, например, гидрохинон с фенидоном, поскольку указанные соединения выполняют функции восстановителей ионов серебра только в щелочной среде.
О
II
О
О-
2 Ag Вг+ | -> 2 Ag + 2 Вг~ +
О-
На этих участках и формируются пробельные элементы, имеющие двухслойную структуру и состоящие из «негативного серебра», распределенного в желатиновом слое 4, верхнего гидрофильного желатинового слоя 5.
Пробельные элементы форм, изготовленных на электрофотографических пластинах формируются на гидрофильном слое, нанесенном на подложку, который обнажается на стадии удаления ЭФС (см. рис. 6.3, в).
