Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции.doc
Скачиваний:
418
Добавлен:
25.05.2014
Размер:
1.45 Mб
Скачать
    1. Гидростатика Гидростатическое давление и его свойство

Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практические приложения.

Как следует из гл. 1, жидкости практически не способны сопротивляться растяжению, а в неподвижных жидкостях не действуют касательные силы. Поэтому на неподвижную жидкость из поверхностных сил могут действовать только силы давления; причем на внешней поверхности рассматриваемого объема жидкости силы давления всегда направлены по нормали внутрь объема жидкости и, следовательно, являются сжимающими. Под внешней поверхностью жидкости понимают не только поверхность раздела жидкости с газообразной средой или твердыми стенками, но и поверхность объема, мысленно выделяемого из общего объема жидкости.

Таким образом, в неподвижной жидкости возможен лишь один вид напряжения напряжение сжатия, т. е. гидростатическое давление.

Рассмотрим основное свойство гидростатического давления: в любой точке жидкости гидростатическое давление не зависит от ориентировки площадки, на которую оно действует, т. е. от углов ее наклона по отношению к координатным осям.

Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме тетраэдра с ребрами, параллельными координатным осям и соответственно равными , и (рис.2.1). Пусть внутри выделенного объема на жидкость действует единичная массовая сила, составляющие которой равны, и. Обозначим черезгидростатическое давление, действующее на грань, нормальную к оси, черездавление на грань, нормальную к оси, и т. д. Гидростатическое давление, действующее на наклонную грань, обозначим через, а площадь этой грани через .

Составим уравнение равновесия выделенного объема жидкости сначала в направлении оси , учитывая при этом, что все силы направлены по нормалям к соответствующим площадкам внутрь объема жидкости.

Рис. 1.4 Элементарный объем в форме тетраэдра с ребрами, параллельными координатным осям и соответственно равными ,и

Проекция сил давления на ось :

Масса жидкости в тетраэдре равна произведению ее объема на плотность, т. е. , следовательно, массовая сила, действующая на тетраэдр вдоль оси , составляет

.

Уравнение равновесия тетраэдра запишем в виде:

.

Разделив это уравнение на площадь ,которая равна площади проекции наклонной грани на плоскость ,т. е. , получим

При стремлении размеров тетраэдра к нулю последний член уравнения, содержащий множитель , также стремится к нулю, а давления и остаются величинами конечными. Следовательно, в пределе получим

Аналогично составляя уравнения равновесия вдоль осей и, находим

, или (2.1)

Так как размеры тетраэдра , и взяты произвольно, то и наклон площадки произволен и, следовательно, в пределе при стягивании тетраэдра в точку давление в этой точке по всем направлениям будет одинаково. Это положение можно легко свойства гидростатического давления доказать, основываясь на формулах сопротивления материалов для напряжений при сжатии по двум и трем взаимно перпендикулярным направлениям. Для этого положим в указанных формулах касательное напряжение равным нулю, в результате чего получим

.

Рассмотренное свойство давления в неподвижной жидкости имеет место также при движении невязкой жидкости. При движении же реальной жидкости возникают касательные напряжения, вследствие чего давление в реальной жидкости указанным свойством, строго говоря, не обладает.

Соседние файлы в предмете Гидравлика