Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции.doc
Скачиваний:
417
Добавлен:
25.05.2014
Размер:
1.45 Mб
Скачать

Содержание

1. Введение.

1.1 Предмет гидравлики и краткая история её развития.

1.2 Гидростатика

1.3 Кинематика

1.4 Общие уравнения сплошной среды

1.5 Потери напора при установившемся движении.

2. Объемные гидромашины.

2.1 Понятие объемной гидромашины. Насосы, гидродвигатели.

2.2 Величины характеризующие рабочий процесс ОГМ.

2.3 Роторные гидромашины. Классификация.

3. Основные сведения об оъемном гидроприводе.

3.1 Назначения и основные свойства

3.2 Основные параметры гидрооборудования.

3.3 Основные режимы работы и условия эксплуатации гидрооборудования.

1. Введение

    1. Предмет гидравлики и краткая история её развития.

Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие жидкостью и обтекаемыми ею телами или ограничивающими её поверхностями, называется гидромеханикой.

Науку о законах равновесия и движения жидкостей и о способах приложения этих законов к решению практических задач называют гидравликой. В гидравлике рассматривают, главным образом, потоки жидкости, ограниченные и направленные твердыми стенками, т. е. течение в закрытых и открытых каналах.

Таким образом, можно сказать, что в гидравлике изучают в основном внутренние течения жидкостей и решают так называемую внутреннюю задачу в отличие от внешней, связанной с внешним обтеканием тел сплошной средой, которое имеет место при движении тела в жидкости или газе.

Историческое развитие механики жидкостей шло двумя различными путями:

-первый путь – теоретический, путь точного математического анализа, основанного на законах механики. Он привел к созданию теоретической гидромеханики, которая долгое время являлась самостоятельной дисциплиной, непосредственно не связанная с экспериментом. Однако на пути чистого теоретического исследования движения жидкости встречается множество трудностей, и методы теоретической гидромеханики не всегда дают ответы на вопросы, выдвигаемые практикой.

- второй путь – путь широкого применения эксперимента и накопления опытных данных для использования их в инженерной практике – привел к созданию гидравлики.

Понятие жидкости. Реальная и идеальная жидкости

Жидкость – физическое тело, молекулы которого слабо связаны между содой. Поэтому незначительные силы способны легко изменить форму жидкости, которая способна сохранить объем, но не форму. В гидравлике жидкость рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т.е. отвлекаются от молекулярного строения жидкости и её частицы, даже бесконечно малые, считают состоящими из большого числа молекул.

Реальной жидкостью называют жидкость, обладающую вязкостью (свойство жидкости сопротивляться сдвигу ее слоев).

Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости.

рис. 1.1 Профиль скоростей течения жидкости.

Метод гидравлических исследований

Метод, используемый в современной гидравлике, заключается в следующем: исследуемые явления сначала упрощают и к ним применяют законы теоретической механики. Затем полученные результаты сравнивают с данными опытов, выясняют степень расхождения, уточняют и исправляют теоретические выводы и формулы для приспособления их к практическому использованию.

Гидравлика дает методы расчета и проектирования разнообразных гидротехнических сооружений (плотин, каналов, водосливов, трубопроводов для подачи всевозможных жидкостей), гидромашин (насосов, гидротурбин, гидропередач), а также других гидравличе­ских устройств, применяемых во многих областях техники. Осо­бенно велико значение гидравлики в машиностроении, где прихо­дится иметь дело с закрытыми руслами (например, трубами) и на­порными течениями в них, т. е. с потоками без свободной поверхно­сти и с давлением, отличным от атмосферного.

Гидросистемы, состоящие из насосов, трубопроводов, различных гидроагрегатов широко используют в машиностроении в качестве систем жидкостного охлаждения, топливоподачи, смазочных и др.

На различных современных машинах все более широкое приме­нение находят гидропередачи (гидроприводы) и гидроавтоматика.

Гидропередачи представляют собой устройства для передачи механической энергии и преобразования движения посредством жид­кости. По сравнению с передачами других видов (зубчатыми и т. п.) гидропередачи имеют ряд существенных преимуществ: простота пре­образования вращательного движения в возвратно-поступательное, возможность плавного (бесступенчатого) изменения соотношения ско­ростей входного и выходного звеньев, компактность конструкций и малая масса гидромашин при заданной мощности по сравнению, например, с электромашинами и др.

Гидропередачи, снабженные системами автоматического или руч­ного управления, образуют гидроприводы, которые благодаря пере­численным преимуществам широко используют в различных металло­обрабатывающих станках, на летательных аппаратах (самолетах, вер­толетах, ракетах), на сухопутных транспортных машинах (колесных и гусеничных), в строительно-дорожных и подъемно-транспортных машинах, в прокатных станах и прессах и т. п.

Гидроприводы, гидроавтоматика и различные гидравлические устройства являются весьма перспективными для комплексной автоматизации и механизации производства.

Для расчета и проектирования гидроприводов, их систем автоматического регулирования и других устройств с гидромашинами и гидроавтоматикой, а также для правильной их эксплуатации, ремонта и наладки нужно иметь соответствующую подготовку в области гидравлики и теории гидромашин.

Соседние файлы в предмете Гидравлика