
- •Раздел 1. Вопрос 1. Выявление и прогноз динамики временных рядов на основе методологии Бокса-Дженкинса.
- •Вопрос 2. Методика построения и использования авторегрессионных моделей.
- •Вопрос 9. Методика построения и использования arma-моделей.
- •Вопрос 19. Методика построения и использования aRlMa-моделей. Вопрос 2. Методика построения и использования авторегрессионных моделей.
- •Понятие ar(p)- процесса.
- •Вопрос 3. Специфика моделирования многомерных динамических рядов.
- •Вопрос 4. Общая методика прогнозирования на основе эконометрических методов и моделей.
- •Вопрос 5. Задача восстановления критерия оптимальности социально-экономического объекта по нескольким принятым решениям. Вопрос 6. Способы усреднения групповой экспертной информации.
- •Вопрос 7. Прогнозирование и сглаживание временных рядов на основе алгоритмических методов.
- •Наивные методы.
- •Методы усредняющего скользящего сглаживания
- •Методы экпоненциального сглаживания
- •Вопрос 8. Выявление и прогноз динамики временных рядов на основе декомпозиционного подхода.
- •Вопрос 9. Методика построения и использования arma-моделей.
- •Вопрос 10. Эконометрическая модель и задача ее построения. Проблема идентификации систем одновременных уравнений.
- •Проблема идентифицируемости в системах одновременных уравнений
- •Вопрос 11. Методы и проблемы оценивания параметров систем одновременных уравнений.
- •Вопрос 12. Прогнозирование сезонных и циклических составляющих временных рядов, задача их построения.
- •Вопрос 13. Состав и содержание общей процедуры прогнозирования на основе методов экспертного оценивания.
- •Вопрос 14. Особенности понятия «качество прогноза» в рамках методик экспертного прогнозирования.
- •Вопрос 15. Задачи количественной обработки информации на этапе формирования групп экспертов.
- •Вопрос 16. Задача восстановления критерия оптимальности объекта хозяйствования по принятому решению.
- •Вопрос 18. Характеристики качества прогноза, методы его оценки.
- •Вопрос 19. Методика построения и использования aRlMa-моделей.
- •Вопрос 20. Состав и содержание общей процедуры социально-экономического прогнозирования.
- •Вопрос 21. Шкалы измерений и методы измерений объектов социально-экономического прогнозирования.
- •Вопрос 22. Методы уточнения спецификации статистической модели.
- •Вопрос 23. Прогнозирование и сглаживание временных рядов на основе аналитических методов.
- •Вопрос 24. Методика построения и использования оптимизационных имитационных моделей в практике прогнозирования.
- •Вопрос 25. Задачи и методы тестирования временных рядов. Состав и содержание основных тестовых гипотез.
- •Проверка наличия тенденции в среднем уровне ряда
- •Проверка наличия тенденции в дисперсии
- •Проверка на наличие автокорреляции (см. Вопрос 2.6)
- •Вопрос 6. Методы обнаружения автокорреляционных зависимостей во временных рядах.
- •Специальные тесты на проверку формы распределения случайной величины, например с помощью оценивания показателей асимметрии и эксцесса распределения
- •Вопрос 26. Понятие детерминированного и стохастического тренда. Способы тестирования и идентификации.
- •Вопрос 27. Спецификация и идентификация нелинейных связей в рамках эконометрических моделей.
- •Вопрос 28. Методы построения и прогноза моделей сезонных динамических рядов на основе индексного подхода (аддитивные индексы).
- •Вопрос 29. Методы построения и прогноза моделей сезонных динамических рядов на основе индексного подхода (мультипликативные индексы).
- •Вопрос 30. Мультиколлинеарность данных: понятие, виды, обнаружение, устранение.
- •Вопрос 31. Требования к информационному обеспечению эконометрических исследований.
- •Раздел 2. Вопрос 1. Модели с условной гетероскедастичностью. Arch, garch-модели.
- •Вопрос 2. Обоснование и использование косвенного метода наименьших квадратов.
- •Вопрос 3. Омнк. Обоснование и использование метода взвешенных наименьших квадратов.
- •Вопрос 4. Вывод формулы доверительного интервала прогноза на факторных регрессионных моделях.
- •Вопрос 5. Методы тестирования временных рядов на наличие детерминированных трендов.
- •Вопрос 6. Методы обнаружения автокорреляционных зависимостей во временных рядах.
- •Вопрос 7. Вывод формул постоптимизационного анализа (влияние изменения ссч).
- •Вопрос 8. Обоснование построения и использование критерия Дарбина-Уотсона.
- •Вопрос 9. Тесты Дики-Фуллера: назначение, процедура, интерпретация результата.
- •Вопрос 10. Информационные и прогностические критерии оценки качества эконометрических моделей прогнозирования.
- •Характеристики информационной пригодности эконометрической модели
- •Характеристики прогностической пригодности эконометрической модели
- •Вопрос 11. Обоснование задачи восстановления линейных весов частного критерия оптимальности.
- •Вопрос 12. Вывод формул постоптимизационного анализа (влияние изменения цф).
- •Вопрос 13. Вывод формулы доверительного интервала прогноза сезонной (циклической) составляющей временного ряда на основе спектрального анализа.
- •Вопрос 4. Вывод формулы доверительного интервала прогноза на факторных регрессионных моделях.
- •Вопрос 14. Методы тестирования и устранения гетероскедастичности остатков в эконометрическом моделировании.
- •Вопрос 15. Тестирование на коинтегрированность динамических рядов. Тест Дарбина-Уатсона.
- •Вопрос 16. Обоснование метода оценки компетентности экспертов на основе "задачи о лидере".
- •Вопрос 17. Понятие стационарных рядов. Тестирование на стационарность процесса.
- •Вопрос 18. Вывод формул для оценок параметров сезонных (циклических) составляющих временных рядов на основе спектрального анализа.
- •Вопрос 19. Прогнозирование на линейных моделях переменной структуры. Тест г.Чоу.
- •Вопрос 20. Прогноз времени наступления события по моде и медиане по результатам экспертного опроса.
- •Вопрос 21. Обоснование множественного критерия оценки согласованности группы экспертов.
- •Вопрос 22. Модели адаптивного прогноза. Способы коррекции параметров адаптивных моделей.
- •Вопрос 17. Принцип адаптивного прогнозирования. Оценка качества механизмов адаптации. Вопрос 23. Задача корректного формирования группы экспертов на основе результатов их прошлых экспертиз.
- •Вопрос 24. Методы оценки альтернатив на этапе обоснования экспертного выбора.
- •Вопрос 25. Оценка качества экспертного обоснования прогноза на основе парного критерия согласованности Спирмэна: обоснование, свойства, применение.
- •Вопрос 26. Оценка качества экспертного обоснования прогноза на основе парного критерия согласованности Кенделла: обоснование, свойства, применение.
- •Вопрос 27. Оценка качества экспертного обоснования прогноза на основе множественного критерия согласованности Кенделла: обоснование, свойства, применение.
- •Вопрос 28. Тест Гренжера на причинность: назначение, процедура, интерпретация результата.
- •Вопрос 29. Тест Лагранжа: назначение, процедура, интерпретация результата.
- •Вопрос 30. Тесты на гетероскедастичность: назначение, процедуры, интерпретация результатов.
- •Вопрос 31. Тестирование на однородность выборочных данных.
Вопрос 4. Общая методика прогнозирования на основе эконометрических методов и моделей.
Основой
для построения любого вида эконометрической
модели является фактографическая
информация (статистика
об объекте исследования), экспертные
суждения относительно
наблюдаемых особенностей функционирования
объекта исследования, а так же факты и
модели, полученные из экономической
теории.
Этап спецификации представляет собой понимание логики развития объекта. Это сводится к корректному выбору и анализу состава переменных модели (обоснование экзогенных и эндогенных и их тестирование, обоснование метода реализации модели).
Этап идентификации – это оценка параметров множества специфицированных моделей.
Этап верификации (оценка валидности) – это проверка качества сделанных на этапе идентификации модели), т.е. оценка информационной пригодности. Если модель не удовлетворяет заданным требованиям к качеству, то она исключается из исследования, либо происходит идентификация ошибок с последующей корректировкой.
Этап проверка прогностической пригодности – это определение степени пригодности множества оставшихся моделей, в случае неудовлетворительных результатов, необходимо вернуться на этап спецификации.
Этап обоснования окончательного вида генератора прогноза проводится на всем объеме данных.
После всех этапов проводится эксплуатация генератора прогноза, анализ результатов и формулировка выводов.
Вопрос 5. Задача восстановления критерия оптимальности социально-экономического объекта по нескольким принятым решениям. Вопрос 6. Способы усреднения групповой экспертной информации.
В настоящее время распространены экспертные опросы в которых опрашиваемых просят выставить баллы объектам, а затем рассчитывают средние баллы и рассматривают их как интегральные оценки, выставленные коллективом опрошенных.
Из презентации Аксюк (методы усреднения: по сумме рангов, по среднему рангов, по медиане ранга, по
нормированному рангу.)
Метод суммы рангов: Необходимо найти сумму рангов для каждого проекта и затем переназначить ранг. (например самой меньшей сумме присвоить ранг 1)
Метод средних арифметических рангов. Для этого прежде всего подсчитывается сумма рангов, присвоенных проектам. Затем эта сумма делится на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка (в другой терминологии - упорядочение), например исходя из принципа - чем меньше средний ранг, чем лучше проект.
В том случае, если ответы экспертов измерены в порядковой шкале для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан.
Метод медиан рангов. Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания (проще было бы сказать - "в порядке возрастания", но поскольку некоторые ответы совпадают, то приходится использовать непривычный термин "неубывание"). Получим последовательность: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5.
Если
же просят оценить в какой интервал
оценок попадает оценка определенного
проекта, то сначала определяют медианный
интервал, в пределах которого находится
медиана, а затем — значение медианы по
формуле:
где
Метод
нормировнных рангов:
Расчет нормируемых рангов предполагает
построение итогового упорядочивания
объектов сравнения в соответствии с
вектором усредненной оценки объектов
r,
учитывающим коэффициенты относительной
значимости
отдельных оценок объектов i
для каждого эксперта j.
Таким образом сначала рассчитываются
коэффициенты w:
,
а затем – усредненная всеми экспертами
оценка
для каждого объекта.
.
Все упомянутые методы работы с ранжировками, кроме метода нормированных рангов, предполагают предварительную стандартизацию ранжировок.