
- •Раздел 1. Вопрос 1. Выявление и прогноз динамики временных рядов на основе методологии Бокса-Дженкинса.
- •Вопрос 2. Методика построения и использования авторегрессионных моделей.
- •Вопрос 9. Методика построения и использования arma-моделей.
- •Вопрос 19. Методика построения и использования aRlMa-моделей. Вопрос 2. Методика построения и использования авторегрессионных моделей.
- •Понятие ar(p)- процесса.
- •Вопрос 3. Специфика моделирования многомерных динамических рядов.
- •Вопрос 4. Общая методика прогнозирования на основе эконометрических методов и моделей.
- •Вопрос 5. Задача восстановления критерия оптимальности социально-экономического объекта по нескольким принятым решениям. Вопрос 6. Способы усреднения групповой экспертной информации.
- •Вопрос 7. Прогнозирование и сглаживание временных рядов на основе алгоритмических методов.
- •Наивные методы.
- •Методы усредняющего скользящего сглаживания
- •Методы экпоненциального сглаживания
- •Вопрос 8. Выявление и прогноз динамики временных рядов на основе декомпозиционного подхода.
- •Вопрос 9. Методика построения и использования arma-моделей.
- •Вопрос 10. Эконометрическая модель и задача ее построения. Проблема идентификации систем одновременных уравнений.
- •Проблема идентифицируемости в системах одновременных уравнений
- •Вопрос 11. Методы и проблемы оценивания параметров систем одновременных уравнений.
- •Вопрос 12. Прогнозирование сезонных и циклических составляющих временных рядов, задача их построения.
- •Вопрос 13. Состав и содержание общей процедуры прогнозирования на основе методов экспертного оценивания.
- •Вопрос 14. Особенности понятия «качество прогноза» в рамках методик экспертного прогнозирования.
- •Вопрос 15. Задачи количественной обработки информации на этапе формирования групп экспертов.
- •Вопрос 16. Задача восстановления критерия оптимальности объекта хозяйствования по принятому решению.
- •Вопрос 18. Характеристики качества прогноза, методы его оценки.
- •Вопрос 19. Методика построения и использования aRlMa-моделей.
- •Вопрос 20. Состав и содержание общей процедуры социально-экономического прогнозирования.
- •Вопрос 21. Шкалы измерений и методы измерений объектов социально-экономического прогнозирования.
- •Вопрос 22. Методы уточнения спецификации статистической модели.
- •Вопрос 23. Прогнозирование и сглаживание временных рядов на основе аналитических методов.
- •Вопрос 24. Методика построения и использования оптимизационных имитационных моделей в практике прогнозирования.
- •Вопрос 25. Задачи и методы тестирования временных рядов. Состав и содержание основных тестовых гипотез.
- •Проверка наличия тенденции в среднем уровне ряда
- •Проверка наличия тенденции в дисперсии
- •Проверка на наличие автокорреляции (см. Вопрос 2.6)
- •Вопрос 6. Методы обнаружения автокорреляционных зависимостей во временных рядах.
- •Специальные тесты на проверку формы распределения случайной величины, например с помощью оценивания показателей асимметрии и эксцесса распределения
- •Вопрос 26. Понятие детерминированного и стохастического тренда. Способы тестирования и идентификации.
- •Вопрос 27. Спецификация и идентификация нелинейных связей в рамках эконометрических моделей.
- •Вопрос 28. Методы построения и прогноза моделей сезонных динамических рядов на основе индексного подхода (аддитивные индексы).
- •Вопрос 29. Методы построения и прогноза моделей сезонных динамических рядов на основе индексного подхода (мультипликативные индексы).
- •Вопрос 30. Мультиколлинеарность данных: понятие, виды, обнаружение, устранение.
- •Вопрос 31. Требования к информационному обеспечению эконометрических исследований.
- •Раздел 2. Вопрос 1. Модели с условной гетероскедастичностью. Arch, garch-модели.
- •Вопрос 2. Обоснование и использование косвенного метода наименьших квадратов.
- •Вопрос 3. Омнк. Обоснование и использование метода взвешенных наименьших квадратов.
- •Вопрос 4. Вывод формулы доверительного интервала прогноза на факторных регрессионных моделях.
- •Вопрос 5. Методы тестирования временных рядов на наличие детерминированных трендов.
- •Вопрос 6. Методы обнаружения автокорреляционных зависимостей во временных рядах.
- •Вопрос 7. Вывод формул постоптимизационного анализа (влияние изменения ссч).
- •Вопрос 8. Обоснование построения и использование критерия Дарбина-Уотсона.
- •Вопрос 9. Тесты Дики-Фуллера: назначение, процедура, интерпретация результата.
- •Вопрос 10. Информационные и прогностические критерии оценки качества эконометрических моделей прогнозирования.
- •Характеристики информационной пригодности эконометрической модели
- •Характеристики прогностической пригодности эконометрической модели
- •Вопрос 11. Обоснование задачи восстановления линейных весов частного критерия оптимальности.
- •Вопрос 12. Вывод формул постоптимизационного анализа (влияние изменения цф).
- •Вопрос 13. Вывод формулы доверительного интервала прогноза сезонной (циклической) составляющей временного ряда на основе спектрального анализа.
- •Вопрос 4. Вывод формулы доверительного интервала прогноза на факторных регрессионных моделях.
- •Вопрос 14. Методы тестирования и устранения гетероскедастичности остатков в эконометрическом моделировании.
- •Вопрос 15. Тестирование на коинтегрированность динамических рядов. Тест Дарбина-Уатсона.
- •Вопрос 16. Обоснование метода оценки компетентности экспертов на основе "задачи о лидере".
- •Вопрос 17. Понятие стационарных рядов. Тестирование на стационарность процесса.
- •Вопрос 18. Вывод формул для оценок параметров сезонных (циклических) составляющих временных рядов на основе спектрального анализа.
- •Вопрос 19. Прогнозирование на линейных моделях переменной структуры. Тест г.Чоу.
- •Вопрос 20. Прогноз времени наступления события по моде и медиане по результатам экспертного опроса.
- •Вопрос 21. Обоснование множественного критерия оценки согласованности группы экспертов.
- •Вопрос 22. Модели адаптивного прогноза. Способы коррекции параметров адаптивных моделей.
- •Вопрос 17. Принцип адаптивного прогнозирования. Оценка качества механизмов адаптации. Вопрос 23. Задача корректного формирования группы экспертов на основе результатов их прошлых экспертиз.
- •Вопрос 24. Методы оценки альтернатив на этапе обоснования экспертного выбора.
- •Вопрос 25. Оценка качества экспертного обоснования прогноза на основе парного критерия согласованности Спирмэна: обоснование, свойства, применение.
- •Вопрос 26. Оценка качества экспертного обоснования прогноза на основе парного критерия согласованности Кенделла: обоснование, свойства, применение.
- •Вопрос 27. Оценка качества экспертного обоснования прогноза на основе множественного критерия согласованности Кенделла: обоснование, свойства, применение.
- •Вопрос 28. Тест Гренжера на причинность: назначение, процедура, интерпретация результата.
- •Вопрос 29. Тест Лагранжа: назначение, процедура, интерпретация результата.
- •Вопрос 30. Тесты на гетероскедастичность: назначение, процедуры, интерпретация результатов.
- •Вопрос 31. Тестирование на однородность выборочных данных.
Вопрос 10. Информационные и прогностические критерии оценки качества эконометрических моделей прогнозирования.
Понятие «качество прогноза» в широком смысле слова представляет собой единство прогнозных параметров обоснованности, достоверности, точности, типизации ошибок прогноза, а также выявление источников ошибок прогноза. Узкое толкование этого термина подразумевает некую меру устойчивого развития объекта в соответствии с траекториями, определяемыми прогнозом и чаще всего описывается мерами фиксации точности прогнозирования, т.е. непосредственно ошибками прогноза.
Характеристики информационной пригодности эконометрической модели
Характеристики качества информационной пригодности эконометрической модели описывают, на сколько достоверно выбранная модель отражает, объясняет ретроспективу исследуемого явления.
Абсолютные показатели:
Абсолютная
модельная ошибка (модельный остаток):
Абсолютное
отклонение от средней:
|
Вариация
переменной у:
Вариация
остаточная:
Вариация
модельная (регрессии):
|
Оценка
дисперсии остатков:
Стандартная
ошибка модели:
Среднее
абсолютное отклонение (MAD):
|
Информационный
критерий Акаике (АIC):
Информационный
критерий Шварца (SIC):
|
Относительные показатели:
Коэффициент детерминации (критерий R2):
|
Исправленный коэффициент детерминации:
|
Расчетное
значение F-статистики:
|
Характеристики прогностической пригодности эконометрической модели
Абсолютные показатели:
Абсолютная ошибка прогноза:
|
Средняя абсолютная ошибка прогноза: , где n – период упреждения прогноза. |
Среднеквадратическая
ошибка прогноза: |
Относительные показатели:
Относительная
ошибка прогноза:
|
Средняя
относительная ошибка прогноза:
|
Доля
исполнения прогнозов:
,
где p – доля
подтвердившихся прогнозов; q - доля
не подтвердившихся прогнозов.
Коэффициенты несоответствия (коэффициенты Тейла):
1).
;
2).
.-
данная форма [0;1], чем меньше, тем лучше.
Качественные способы оценки точности прогноза весьма многочисленны, но по частоте использования бесспорным лидером в анализе является построение диаграммы «прогноз-реализация». Данный метод состоит в следующем.
На координатной плоскости «прогноз-реализация» наносится «облако» прогноза.
Визуально осуществляется анализ формы распределения относительно линии «идеальных» прогнозов.
Так же можно добавить про Вопрос 14. Особенности понятия «качество прогноза» в рамках методик экспертного прогнозирования.