
- •Энергоснабжение
- •Факультет энергетики, машиностроения и транспорта:
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы представлены в таблице.
- •1.2.3. Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа
- •Раздел 1. Теоретические основы теплоэнергетики (18 часов)
- •1.1. Основы технической термодинамики
- •1.2. Первый и второй законы термодинамики
- •Раздел 2. Циклы энергетических установок (24 часа)
- •2.1. Паротурбинные (пту) и парогазовые установки
- •2.2. Теплоцентрали (тэц). Ядерные энергетические установи
- •Раздел 3. Источники энергоснабжения (26 часов)
- •3.1. Котельные установки
- •3.2. Электрические станции и системы
- •Раздел 4. Системы энергоснабжения (28 часов)
- •4.1. Электроснабжение
- •4.2. Теплоснабжение, топливо и водоснабжение, хладоснабжение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины «Энергоснабжение»
- •Раздел 4. Системы энергоснабжения
- •2.4. Временной график изучения дисциплины
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очная форма обучения)
- •2.5.1.2. Практические занятия (очно-заочная форма обучения)
- •2.5.1.3. Практические занятия (заочная форма обучения)
- •2.5.2. Лабораторные работы
- •2.5.2.2. Лабораторные работы (очная форма обучения)
- •2.5.2.2. Лабораторные работы (очно-заочная форма обучения)
- •2.5.2.3. Лабораторные работы (заочная форма обучения)
- •2.6. Балльно-рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект
- •Введение
- •Раздел 1. Теоретические основы теплоэнергетики
- •1.1. Основы технической термодинамики
- •1.1.1. Термодинамическая система, параметры состояния
- •1.1.2. Теплоемкость, энтальпия и энтропия
- •1.2. Первый и второй законы термодинамики
- •Работа и теплота
- •1.2.1. Первый закон термодинамики для потока рабочего тела
- •1.2.2. Второй закон термодинамики
- •1.2.3. Диаграммы водяного пара
- •Вопросы для самопроверки
- •Раздел 2. Циклы энергетических установок
- •2.1. Паротурбинные и парогазовые установок
- •2.2. Теплоэлектроцентрали (тэц). Ядерные энергетические установки
- •2.2.1. Циклы ядерных энергетических установок
- •Вопросы для самопроверки
- •Раздел 3. Источники энергоснабжения
- •3.1. Котельные установки
- •3.1.1. Тепловые схемы источников теплоснабжения
- •3.2. Электрические станции и системы
- •3.2.1. Технико-экономические показатели кэс
- •3.2.2. Теплоэлектроцентрали (тэц)
- •3.2.3. Показатели тепловой экономичности тэц
- •3.2.4. Атомные электростанции (аэс)
- •3.2.5. Гидро- и гидроаккумулирующие станции
- •Вопросы для самопроверки
- •Раздел 4. Системы энергоснабжения
- •4.1. Электроснабжение.
- •4.1. Электроснабжение
- •4.1.1. Общие сведения об электроснабжении
- •4.1.2. Энергетические системы (эс)
- •4.1.3. Электрические сети
- •4.1.4. Приёмники электрической энергии (эп)
- •4.1.5. Графики нагрузок
- •4.1.6. Системы электроснабжения
- •4.1.7. Качество электрической энергии
- •4.2. Теплоснабжение
- •4.2.1. Системы теплоснабжения
- •4.2.2. Закрытая водяная система теплоснабжения
- •4.2.3. Открытая водяная система теплоснабжения
- •4.2.4. Тепловые пункты
- •4.2.5. Паровые системы теплоснабжения
- •4.2.6. Классификация тепловых нагрузок
- •Вопросы для самопроверки
- •Заключение
- •3.3. Глоссарий (словарь терминов)
- •3.4. Методические указания к проведению практических занятий
- •Практическое занятие №1. Расчет цикла Карно
- •Практическое занятие №2.Расчет цикла Ренкина пту и цикла пгу
- •Практическое занятие №3. Расчет показателей экономичности кэс и тэц
- •Практическое занятие №4. Тепловая нагрузка промпредприятий
- •3.5. Методические указания к проведению лабораторных работ
- •Лабораторная работа 1. Расчет теплового баланса и расхода топлива парового котла
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Описание лабораторной установки
- •4. Порядок выполнения работы
- •Форма 1
- •Форма 2
- •П.2. Расчетные присосы холодного воздуха
- •П.3. Энтальпия насыщенного и перегретого пара (кДж/кг)
- •П.4. Энтальпия воды (кДж/кг)
- •5. Содержание отчета
- •Лабораторная работа 2. Изучение оборудования теплового пункта (мтп)
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Обработка результатов опыта
- •5. Содержание отчета
- •4. Блок контроля освоения дисциплины
- •4.1. Задание на курсовую работу
- •4.2. Методические указания к выполнению курсовой работы
- •4.2.1. Состав и объем курсовой работы
- •4.2.2. Расчетно-пояснительная записка
- •4.2.2.1. Задание на курсовую работу
- •4.2.2.2. Производственно-технологическое теплопотребление
- •4.2.2.3. Коммунально-бытовое теплопотребление
- •Расчетные тепловые нагрузки
- •Средние тепловые нагрузки
- •Годовые расходы теплоты
- •4.2.2.4. Отпуск теплоты по сетевой воде
- •4.2.2.5. Выбор основного оборудования
- •4.2.2.6. Показатели тепловой экономичности тэц
- •4.2.2.7. Принципиальная схема системы теплоснабжения
- •Графическая часть
- •П. 3 Укрупненные показатели среднего теплового потока на горячее водоснабжение жилых и общественных зданий при температуре воды 550с qr, Вт/чел.
- •Диаграмма I-s для водного пара
- •4.3. Тренировочные тесты
- •Правильные ответы на тренировочные тесты
- •4.4. Вопросы и задачи для подготовки к экзамену
- •Шелудько Ольга Владимировна энергоснабжение Учебно-методический комплекс
- •191186, Санкт-Петербург, ул. Миллионная, 5
- •Энергоснабжение
3.2.2. Теплоэлектроцентрали (тэц)
На ТЭЦ энергия топлива сначала используется для производства электроэнергии, а затем менее ценная теплота применяется для нужд теплофикации. В тех случаях, когда прилегающие к тепловым электростанциям районы должны потреблять большие количества теплоты, целесообразнее использовать комбинированную выработку теплоты и электроэнергии, что мы и имеем на теплоэлектроцентралях. ТЭЦ работают по теплофикационному циклу. Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплотой. Являясь, как и КЭС, тепловыми электростанциями, они отличаются от последних использованием отработавшего в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электроэнергии и теплоты достигается значительная экономия топлива по сравнению с раздельным энергоснабжением. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением электроэнергии и теплоты. В настоящее время в России на ТЭЦ производится 25…35 % всей вырабатываемой электроэнергии.
На современных ТЭЦ, работающих на органическом топливе, как правило, устанавливаются теплофикационные турбины большой единичной мощности (50…250 МВт) на высокие и сверхкритические начальные параметры пара (13 и 24 МПа) двух основных типов: конденсационные с отбором пара (Т и ПТ) и с противоподавлением (Р).
Отработавший пар низкого давления (около 0,05…0,25 МПа) отводится из так называемых теплофикационных отборов турбины. Этот пар используется на ТЭЦ для подогрева сетевой воды, циркулирующей в тепловой сети.
Комбинированное производство электрической и тепловой энергии на ТЭЦ предполагает наряду с отпуском электрической энергии отпуск теплоты для технологических нужд промышленности (обычно в виде пара необходимых параметров) или для целей отопления, вентиляции и горячего водоснабжения (ГВС) жилых, общественных и промышленных зданий и сооружений (в виде горячей воды до 150°С) или одновременно и пара и горячей воды.
Схема пароснабжения зависит от характера паропотребления и выбирается исходя из технико-экономических соображений, учитывающих показатели всех элементов системы пароснабжения: ТЭЦ, паропроводов, потребителей.
Если всем потребителям требуется пар низкого давления, применяется однотрубная система, при потреблении пара высокого и низкого давления – двухтрубная.
Численные значения давления пара, отпускаемого потребителем, составляют: для отопительно-вентиляционных установок потребителей – 0,06…0,25 МПа; технологических аппаратов – 0,6…0,8 МПа, для паровых приводов – 1,2…1,8 МПа, а в ряде случаев 3,5 и даже 9 МПа.
Отпуск пара от ТЭЦ внешним потребителем может производится по различным схемам:
1. Из отборов теплофикационных турбин (турбины ПТ имеют производственный и отопительный отборы, типа Т – только отопительный отбор).
Только турбины с регулируемыми отборами могут свободно изменять тепловую и электрическую нагрузки, т.е. работать по свободному графику.
2. От паропреобразователей ТЭЦ, где получают вторичный пар; греющим теплоносителем является первичный пар с большим давлением чем у вторичного пара, отпускаемого потребителям.
Особенности технологической схемы ТЭЦ показаны на рис. 3.7. Части схемы, которые по своей структуре подобны таковым на КЭС на рис. 3.7 не показаны. Основное отличие заключается в пароводяном контуре.
При расширении в турбине часть пара с давлением ротб = 0,9…1,2 МПа отбирается и отводится в сетевой пароводяной подогреватель СП, через который сетевым насосом СН прогоняется вода, используемая для отопления зданий и других нужд городского хозяйства и промышленных предприятий.
На производство пар подается, когда вблизи станции имеются промышленные предприятия, которым требуется пар для технологических процессов. Количество отбираемого от промежуточных ступеней турбины пара определяется потребностью тепловых потребителей в горячей воде и паре.
Использование для теплофикации частично отработавшего пара из промежуточных ступеней турбины уменьшает количество пара, поступающего в ее конденсатор, и соответственно потери теплоты с циркуляционной водой. Всю теплоту, которая поступает со станции в теплофикационную сеть с горячей водой или паром, считают полезно отпущенной теплотой.
Рис. 3.7. Технологическая схема теплофикационной установки:
ГРУ – генераторное распределительное устройство; Г – генератор; СП – сетевой пароводяной подогреватель; СН – сетевой насос; ПН – питательный насос
Для оценки экономичности теплофикационного цикла пользуются коэффициентом использования теплоты ηи, представляющим собой отношение всего количества полезно использованной теплоты Qотп и выработанной электроэнергии Wэ к подведенной теплоте Q1, полученной от сжигания топлива:
(3.8)
Этот показатель характеризует общее использование энергии топлива на ТЭЦ. Экономичность работы ТЭЦ зависит от величины отбора на теплофикацию: с увеличеним отбора пара на теплофикацию и уменьшением количества пара, поступающего в конденсаторы теплофикационных турбин, КПД ТЭЦ возрастает. Наиболее экономичным режимом работы ТЭЦ является ее работа по графику теплового потребления при минимальном пропуске пара в конденсатор.
Так как режимы тепловых и электрических потребителей различны, то осуществление указанного режима ТЭЦ возможно только при ее параллельной работе с другими электростанциями энергосистемы – ТЭС и ГЭС.
Особенность ТЭЦ – повышенная мощность теплового оборудования по сравнению с электрической мощностью электростанции, что определяет большой расход электроэнергии на собственные нужды по сравнению с КЭС.