
- •Энергоснабжение
- •Факультет энергетики, машиностроения и транспорта:
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы представлены в таблице.
- •1.2.3. Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа
- •Раздел 1. Теоретические основы теплоэнергетики (18 часов)
- •1.1. Основы технической термодинамики
- •1.2. Первый и второй законы термодинамики
- •Раздел 2. Циклы энергетических установок (24 часа)
- •2.1. Паротурбинные (пту) и парогазовые установки
- •2.2. Теплоцентрали (тэц). Ядерные энергетические установи
- •Раздел 3. Источники энергоснабжения (26 часов)
- •3.1. Котельные установки
- •3.2. Электрические станции и системы
- •Раздел 4. Системы энергоснабжения (28 часов)
- •4.1. Электроснабжение
- •4.2. Теплоснабжение, топливо и водоснабжение, хладоснабжение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины «Энергоснабжение»
- •Раздел 4. Системы энергоснабжения
- •2.4. Временной график изучения дисциплины
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очная форма обучения)
- •2.5.1.2. Практические занятия (очно-заочная форма обучения)
- •2.5.1.3. Практические занятия (заочная форма обучения)
- •2.5.2. Лабораторные работы
- •2.5.2.2. Лабораторные работы (очная форма обучения)
- •2.5.2.2. Лабораторные работы (очно-заочная форма обучения)
- •2.5.2.3. Лабораторные работы (заочная форма обучения)
- •2.6. Балльно-рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект
- •Введение
- •Раздел 1. Теоретические основы теплоэнергетики
- •1.1. Основы технической термодинамики
- •1.1.1. Термодинамическая система, параметры состояния
- •1.1.2. Теплоемкость, энтальпия и энтропия
- •1.2. Первый и второй законы термодинамики
- •Работа и теплота
- •1.2.1. Первый закон термодинамики для потока рабочего тела
- •1.2.2. Второй закон термодинамики
- •1.2.3. Диаграммы водяного пара
- •Вопросы для самопроверки
- •Раздел 2. Циклы энергетических установок
- •2.1. Паротурбинные и парогазовые установок
- •2.2. Теплоэлектроцентрали (тэц). Ядерные энергетические установки
- •2.2.1. Циклы ядерных энергетических установок
- •Вопросы для самопроверки
- •Раздел 3. Источники энергоснабжения
- •3.1. Котельные установки
- •3.1.1. Тепловые схемы источников теплоснабжения
- •3.2. Электрические станции и системы
- •3.2.1. Технико-экономические показатели кэс
- •3.2.2. Теплоэлектроцентрали (тэц)
- •3.2.3. Показатели тепловой экономичности тэц
- •3.2.4. Атомные электростанции (аэс)
- •3.2.5. Гидро- и гидроаккумулирующие станции
- •Вопросы для самопроверки
- •Раздел 4. Системы энергоснабжения
- •4.1. Электроснабжение.
- •4.1. Электроснабжение
- •4.1.1. Общие сведения об электроснабжении
- •4.1.2. Энергетические системы (эс)
- •4.1.3. Электрические сети
- •4.1.4. Приёмники электрической энергии (эп)
- •4.1.5. Графики нагрузок
- •4.1.6. Системы электроснабжения
- •4.1.7. Качество электрической энергии
- •4.2. Теплоснабжение
- •4.2.1. Системы теплоснабжения
- •4.2.2. Закрытая водяная система теплоснабжения
- •4.2.3. Открытая водяная система теплоснабжения
- •4.2.4. Тепловые пункты
- •4.2.5. Паровые системы теплоснабжения
- •4.2.6. Классификация тепловых нагрузок
- •Вопросы для самопроверки
- •Заключение
- •3.3. Глоссарий (словарь терминов)
- •3.4. Методические указания к проведению практических занятий
- •Практическое занятие №1. Расчет цикла Карно
- •Практическое занятие №2.Расчет цикла Ренкина пту и цикла пгу
- •Практическое занятие №3. Расчет показателей экономичности кэс и тэц
- •Практическое занятие №4. Тепловая нагрузка промпредприятий
- •3.5. Методические указания к проведению лабораторных работ
- •Лабораторная работа 1. Расчет теплового баланса и расхода топлива парового котла
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Описание лабораторной установки
- •4. Порядок выполнения работы
- •Форма 1
- •Форма 2
- •П.2. Расчетные присосы холодного воздуха
- •П.3. Энтальпия насыщенного и перегретого пара (кДж/кг)
- •П.4. Энтальпия воды (кДж/кг)
- •5. Содержание отчета
- •Лабораторная работа 2. Изучение оборудования теплового пункта (мтп)
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Обработка результатов опыта
- •5. Содержание отчета
- •4. Блок контроля освоения дисциплины
- •4.1. Задание на курсовую работу
- •4.2. Методические указания к выполнению курсовой работы
- •4.2.1. Состав и объем курсовой работы
- •4.2.2. Расчетно-пояснительная записка
- •4.2.2.1. Задание на курсовую работу
- •4.2.2.2. Производственно-технологическое теплопотребление
- •4.2.2.3. Коммунально-бытовое теплопотребление
- •Расчетные тепловые нагрузки
- •Средние тепловые нагрузки
- •Годовые расходы теплоты
- •4.2.2.4. Отпуск теплоты по сетевой воде
- •4.2.2.5. Выбор основного оборудования
- •4.2.2.6. Показатели тепловой экономичности тэц
- •4.2.2.7. Принципиальная схема системы теплоснабжения
- •Графическая часть
- •П. 3 Укрупненные показатели среднего теплового потока на горячее водоснабжение жилых и общественных зданий при температуре воды 550с qr, Вт/чел.
- •Диаграмма I-s для водного пара
- •4.3. Тренировочные тесты
- •Правильные ответы на тренировочные тесты
- •4.4. Вопросы и задачи для подготовки к экзамену
- •Шелудько Ольга Владимировна энергоснабжение Учебно-методический комплекс
- •191186, Санкт-Петербург, ул. Миллионная, 5
- •Энергоснабжение
1.2.1. Первый закон термодинамики для потока рабочего тела
В потоке рабочего тела происходит
изменение кинетической энергии рабочего
тела
и учитывается работа сил внешнего
давления dl´. Тогда согласно
первому закону термодинамики
.
(1.16)
или
(1.17)
Теплота, подведенная к потоку рабочего тела, идет на увеличение его энтальпии и кинетической энергии. Так как по первому закону
,
то
.
(1.18)
Изменение кинетической энергии потока
называют его технической работой, т. е.
кинетическая энергия потока рабочего
тела равна технической (полезной) работе
(знак
минус указывает на уменьшение объема
с ростом давления).
Пример. В тепловом двигателе (паротурбинная установка) поток пара адиабатно расширяется на лопатках турбины (dq = 0):
,
Дж. (1.19)
1.2.2. Второй закон термодинамики
Второй закон термодинамики качественный, устанавливает направление перехода теплоты, а также ту ее часть, которую можно перевести в работу в тепловом двигателе. С. Карно (1824 г.) указал на возможность превращения теплоты в полезную работу в двигателях при наличии двух источников теплоты, т.е. необходимым условием для получения работы в тепловом двигателе является разность температур.
Циклы, в которых теплота превращается в работу, называются прямыми, или циклами тепловых двигателей.
На рис. 1.2 и 1.3 изображены прямой цикл в p-v диаграмме и схема теплового двигателя. Рабочее тело 1 (рис. 1.3) в тепловом двигателе 3 получает из горячего источника 2 с температурой Т1 на участке 1-2 цикла (рис. 1.2) теплоту q1 (подвод теплоты) и совершает работу l1 (площадь 1-а-2-3-4-1). Чтобы процесс непрерывно повторялся, в тепловом двигателе нужно возвратить рабочее тело в начальное состояние 1 путем затраты работы l2 в процессе 2-b-1 (площадь 2-b-1-4-3-2) и отвода теплоты q2 в холодный источник 4 с температурой Т2. В тепловом двигателе часть теплоты (q1 – q2) превращена в работу.
Рис. 1.2. Изображение замкнутого термодинамического процесса (цикла)
в р, v – диаграмме
Рис. 1.3. Схема теплового двигателя
Эффективность прямых обратимых циклов оценивают термическим КПД.
Термический КПД – это отношение работы цикла ко всей подведенной теплоте.
.
(1.20)
Термический КПД цикла Карно
.
(1.21)
Из формулы видно, что
не зависит от свойств рабочего тела, а
его величина определяется температурами
Т2 и Т1 холодного и горячего
источников теплоты.
Термический КПД цикла Карно имеет максимальное значение, он является эталоном при оценке совершенства любых циклов тепловых двигателей.
1.2.3. Диаграммы водяного пара
В современной теплоэнергетике водяной пар является основным рабочим телом.
Термодинамические таблицы водяного пара могут дать лишь дискретные значения искомых величин. Для изображения процессов водяного пара на практике часто используют диаграммы.
Диаграмма T-s водяного пара (рис. 1.4) представляет собой график, построенный в координатах абсолютная температура-энтропия, на котором нанесены следующие линии: изобары нагрева воды аоа', парообразования а´а´´ и перегрева пара а´´а, верхняя (х = 1) и нижняя (х = 0) пограничные кривые, линии постоянной сухости (х = const). Между пограничными кривыми расположена область влажного пара с различными степенями сухости. Части диаграммы, находящиеся правее х = 1 и левее х = 0, являются соответственно областями перегретого пара и воды. Т-s диаграмма позволяет наглядно оценить изменение температуры водяного пара и теплоту пара в различных процессах. Недостатком использования Т-s диаграммы является необходимость измерения площадей.
Рис. 1.4. Т-s – диаграмма водяного пара
Диаграмма h-s водяного пара (рис. 1.5) строится по значениям энтальпии и энтропии на обеих пограничных кривых области насыщения. Указанные данные определяются по таблицам термодинамических свойств воды и водяного пара.
Начальной точкой для отсчета энтальпии и энтропии является тройная точка. Изобары-изотермы области насыщения представляют собой наклонные прямые линии p = const. При увеличении давления растет температура насыщения и изобары идут более круто. Крутизна изобар-изотерм возрастает вплоть до критических значений, так как наибольшей температурой области насыщения является критическая температура. Параметры критической точки К: tкр = = 374 oC, ркр = 22,1 МПа, vкр = 0,001 м3/кг.
После пересечения с верхней пограничной кривой (х = 1) изобары, плавно сопрягаясь с прямолинейными отрезками области насыщения, начинают приобретать выпуклость, направленную вниз, а изотермы круто поворачивают направо, асимптотически стремясь к горизонталям. Последнее объясняется тем, что по мере удаления от области насыщения и падения давления перегретый пар по своим свойствам приближается к идеальному газу, для которого энтальпия является однозначной функцией температуры.
С помощью h, s – диаграммы можно сразу с достаточной для инженерной практики точностью найти числовые значения для шести термодинамических параметров: h, s, v, p, t, x. Остальные необходимые термодинамические величины такие, как работа и теплота, а также изменение внутренней энергии, легко рассчитывают по найденным параметрам.
Диаграмма h,s приведена в приложении.
Рис. 1.5. h-s – диаграмма водяного пара