
- •Введение
- •Глава 1. Оптимизационные экономико-математические модели
- •1.1. Общая задача оптимизации. Примеры задач линейного программирования
- •1.1.1. Задача оптимального использования ресурсов (задача о коврах)
- •Экономико-математическая модель задачи
- •Экономико-математическая модель задачи
- •1.2. Графический метод решения задач линейного программирования
- •Экономико-математическая модель задачи
- •1.3. Технология решения задач линейного программирования с помощью надстройки поиск решения в среде excel
- •1.3.1. Общие сведения о работе с табличным процессором Excel
- •Экономико-математическая модель задачи
- •1.4. Двойственность в задачах линейного программирования. Анализ полученных оптимальных решений
- •Решение
- •Содержание отчета по результатам
- •Содержание отчета по устойчивости
- •Решение
- •Задачи для самостоятельного решения
- •1.5. Специальные задачи линейного программирования
- •1.5.1. Задачи целочисленного программирования
- •Экономико-математическая модель задачи
- •Решение задачи целочисленного программирования с помощью средства Excel Поиск решения
- •1.5.2. Транспортная задача и ее реализация в среде Excel
- •Применение транспортных моделей к решению некоторых экономических задач
- •Решение
- •1.31. Диалоговое окно Результаты поиска решения
- •1.5.3. Задача о назначениях
- •Экономико-математическая модель задачи
- •1.6. Возможные ошибки при вводе условий задач линейного программирования
- •Глава 2. Балансовые модели
- •2.1. Экономико-математическая модель межотраслевого баланса (модель Леонтьева)
- •2.2. Межотраслевые балансовые модели в анализе экономических показателей
- •Решение
- •2.3. Модель международной торговли (линейная модель обмена)
- •Решение
- •2.4. Модель неймана
- •Вопросы и задачи для самостоятельного решения
- •Глава 3. Методы и модели анализа и прогнозирования экономических процессов с использованием временных рядов
- •3.1. Основные понятия и определения
- •3.1.1. Требования к исходной информации
- •3.1 .2. Этапы построения прогноза по временным рядам
- •2. Построение моделей
- •3. Оценка качества построенных моделей
- •4. Построение точечных и интервальных прогнозов
- •Установка Пакета анализа
- •Решение
- •Решение задачи с помощью Пакета анализа Excel
- •Решение
- •3.3. Анализ временных рядов с помощью инструмента мастер диаграмм
- •Построение линий тренда
- •График временного ряда Индекс потребительских расходов
- •Решение
- •Вопросы и задачи для самостоятельного решения
- •Глава 4. Аудиторная работа «Решение задач линейного программирования с использованием Microsoftt Excel»
- •4.1. Руководство к выполнению аудиторной работы
- •4.2. Инструкция по использованию Microsoft Excel при решении задач линейного программирования
- •2) В окне Поиск решения запустить задачу на решение;
- •3) В окне Результат выбрать формат вывода решения.
- •4.3. Порядок выполнения работы
- •Задание 1
- •Задание 2
- •Примерные вопросы на защите работы
- •Приложение 1
- •Василий Васильевич леонтьев
- •5 Августа 1906 г. - 5 февраля 1999 г.
- •Леонид Витальевич канторович
- •19 Января 1912 г. - 7 апреля 1986 г.
- •Оглавление
- •Глава 1. Оптимизационные экономико-математические модели
- •Глава 2. Балансовые модели
- •Глава 3. Методы и модели анализа и прогнозирования экономических процессов с использованием временных рядов
- •Глава 4. Аудиторная работа «решение задач линейного программирования с использованием microsoft excel»
3.1.1. Требования к исходной информации
Анализ временных рядов, отражающих развитие экономических процессов, начинается с оценки данных. Уровни исследуемого показателя обязательно должны быть сопоставимыми, однородными и устойчивыми, а их число должно быть достаточно велико.
Сопоставимость достигается в результате одинакового подхода к наблюдениям на разных этапах формирования динамического ряда. Уровни во временных рядах должны иметь одинаковые:
единицы измерения;
шаг наблюдений;
интервал времени;
методику расчета;
элементы, относящиеся к неизменной совокупности.
Однородность данных означает отсутствие сильных изломов тенденций, а также аномальных (т.е. резко выделяющихся, нетипичных для данного ряда) наблюдений. Аномальные наблюдения проявляются в виде сильного изменения уровня - скачка или спада - с последующим приблизительным восстановлением предыдущего уровня. Наличие аномалии резко искажает результаты моделирования. Поэтому аномальные наблюдения необходимо исключить из временного ряда, заменив их расчетными значениями.
Устойчивость характеризуется преобладанием закономерности над случайностью в изменении уровней ряда. На графиках устойчивых временных рядов закономерность прослеживается визуально, на графиках неустойчивых рядов изменения последовательных уровней представляются хаотичными, и поэтому поиск закономерностей в формировании значений уровней таких рядов лишен смысла.
Требование полноты данных обусловливается тем, что закономерность может обнаружиться лишь при наличии минимально допустимого объема наблюдений.
3.1 .2. Этапы построения прогноза по временным рядам
Экстраполяционное прогнозирование экономических процессов, представленных одномерными временными рядами, сводится к выполнению следующих основных этапов:
1) предварительный анализ данных;
2) построение моделей: формирование набора аппроксимирующих функций (кривых роста) и численное оценивание пара метров моделей;
3) проверка адекватности моделей и оценка их точности;
4) выбор лучшей модели;
5) расчет точечного и интервального прогнозов.
1. Предварительный анализ данных.
На этом этапе производится:
выявление аномальных наблюдений;
проверка наличия тренда;
сглаживание временных рядов;
расчет показателей развития динамики экономических процессов.
Так как наличие аномальных наблюдений приводит к искажению результатов моделирования, то необходимо убедиться в отсутствии аномалий данных. В качестве примера аномалии может служить скачок курса доллара, зафиксированный в «черный вторник».
Для диагностики аномальных наблюдений
разработаны различные критерии,
например метод Ирвина [1]. Для всех или
только для подозреваемых в аномальности
наблюдений вычисляется величина λt:
,
где
,
.
Если рассчитанная величина λt превышает табличный уровень (например, для 10 наблюдений значение критерия Ирвина равно 1,5), то уровень yt считается аномальным. Аномальные наблюдения необходимо исключить из временного ряда и заменить их расчетными значениями (самый простой способ замены - в качестве нового значения принять среднее из двух соседних значений).
Следующая процедура этапа предварительного анализа, данных - выявление наличия тенденций в развитии исследуемого показателя. Отметим, что тенденция прослеживается не только в увеличении или уменьшении среднего текущего значения временного ряда, но она присуща и другим его характеристикам: дисперсии, автокорреляции, корреляции с другими показателями и т.д. Тенденцию среднего визуально можно определить из графика исходных данных, а более точно - с помощью метода Фостера Стьюарта, метода проверки существенности разности средних и т.п., подробное описание которых дано в работе [1].
Наличие тенденции среднего уровня на графике становится более заметным, когда на нем отражены сглаженные значения исходных данных.
Процедура сглаживания необходима при построении некоторых математических моделей и для устранения аномальных наблюдений. Чаще всего для сглаживания применяются методы простой скользящей средней, взвешенной скользящей средней и экспоненциального сглаживания.
Традиционными показателями, характеризующими развитие экономических процессов, были и остаются показатели роста и прироста. Для характеристики динамики изменения экономических показателей все чаще используется понятие автокорреляции, которая характеризует не только взаимозависимость уровней одного и того же ряда, относящихся к разным моментам наблюдений, но и степень устойчивости развития процесса во времени, величину оптимального периода прогнозирования и т.п.