Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейная алгебра (лекции, 1 сем,1 курс).docx
Скачиваний:
11
Добавлен:
23.11.2019
Размер:
1.89 Mб
Скачать

6. Прямая в пространстве

Прямой в пространстве называют линию пересечения двух непараллельных плоскостей. Значит, прямая в пространстве задается системой уравнений

при условии отсутствия пропорциональности между коэффициентами линейных уравнений, входящих в систему (3). Однако наиболее распространенным уравнением прямой являются каноническое уравнение. Выведем его

Определение 2. Вектор параллельный прямой называется направляющим вектором этой прямой.

Теорема 3. Если фиксированная точка прямой а направляющий вектор этой прямой, то любая точка связана уравнением

Уравнение (4) называют каноническим уравнением прямой

Доказательство. Вектор коллинеарен вектору = а, значит, их координаты пропорциональны, т.е. имеют место равенства (4). Если же точка не лежит на прямой то векторы

и не коллинеарны, поэтому равенства (4) не имеют места. Теорема доказана.

Если приравнять равные отношения (4) коэффициенту пропорциональности то получим уравнения

задающие прямую параметрически (здесь параметр). Изменяя мы получим все точки

прямой (например, при получает точку ).

Как получить из системы уравнений (3) канонические уравнения прямой ? Пусть произвольная точка, удовлетворяющая системе (3) (ее можно получить, например, фиксируя произвольным образом координату , а затем решить полученную систему уравнений с двумя неизвестными). Далее, векторы и перпендикулярно соответствующим плоскостям в (3), а, значит, векторное призведение параллельно их общей прямой – линии их пересечения. Отсюда следует, что направляющий вектор прямой . Поскольку

то кононическим уравнением прямой будет уравнение

Ясно, что углом между двумя прямыми и (точнее, одним из них; обычно берут острый угол) является угол между их направляющими векторами, поэтому

где направляющий вектор прямой а направляющий вектор прямой При этом если то угол между прямыми будет острый. Из последней формулы получаем следующие утверждения.

Используя полученные сведения о прямой и плоскости, можно без труда решать различные задачи аналитической геометрии. Решим, например, задачу о нахождении точки пересечения прямой (5) и плоскости (2). Подставляя равенства (5) в уравнение (2), получим уравнение решая которое, найдем параметр при котором происходит пересечение прямой и плоскости. Подставляя его в (5), найдем точку пересечения

Лекция 3. Матрицы. Операции над матрицами. Матрицы специального вида. Квадратные матрицы и их определители. Свойства определителей. Обратные матрица и условие ее существования. Ранг матрицы

В теории систем линейных уравнений, в дифференциальных уравнениях и др. математичеких объектах большую роль играют матрицы – таблицы чисел, с помощью которых можно не только компактно записать системы уравнений, но и, производя над ними определенные действия, решать сами уравнения. Перейдем к изложению основных понятий и утверждений, связанным с матрицами.