Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Долгов. Лабораторная диагностика нарушений гемо...doc
Скачиваний:
146
Добавлен:
17.11.2019
Размер:
11.03 Mб
Скачать

Плазменные белки гемостаза

Плазменные белки гемостаза образуют 2 фер­ментативные системы крови, имеющие своей целью поддержание гемостатического баланса (рис. 31):

  1. Система свертывания плазмы. Система со­ стоит из ферментов, неферментативных бел­ ковых катализаторов (кофакторов) и инги­ биторов свертывания. Конечной целью этой системы является образование важнейшего фермента тромбина, а в конечном итоге - фибринового сгустка, составляющего осно­ ву гемостатического тромба.

  2. Система фибринолиза. Конечной целью этой системы является образование главного фер­ мента фибринолиза плазмина и лизис фибри­ нового сгустка. Эту систему составляют плаз- миноген и его активаторы и ингибиторы. Обе эти системы имеют сходные черты:

• В обеих системах происходит много­этапный ферментативный процесс актива-

ции, в котором участвует ряд белков - про-теаз.

  • По крайней мере, in vitro имеется несколько путей запуска каждого процесса, а в итоге об­ разуется один конечный продукт.

  • Многие реакции нуждаются в наличии спе­ цифической поверхности и ионов кальция. In vivo твердой фазой для фиксации реаги­ рующих белков служат кислые фосфолипи- ды клеточных мембран, в частности мемб­ ран тромбоцитов, фибробластов, возможно лейкоцитов.

Кроме каскадных систем свертывания плаз­мы и фибринолиза, к плазменным белкам гемо­стаза относятся многочисленные ингибиторы и активаторы, эффекты которых проявляются как действие антикоагулянтов или прокоагулянтов и соответственно ингибиторов или активаторов фибринолиза.

Рис. 31. Система свертывания крови и система фибринолиза - каскадные протеолитические ферментативные си­стемы, обеспечивающие гемостатический баланс крови

Плазменные белки гемостаза

Система свертывания плазмы

Система свертывания плазмы - фермента­тивная система, осуществляющая каскад протео-литических реакций, в результате которых про­исходит образование фибриновой пробки в мес­те повреждения сосуда. Система свертывания тесно связана с другими протеолитическими си­стемами плазмы, в том числе с системой фибри-нолиза. Белки свертывания плазмы, входящие в каскад свертывания крови, принято называть термином «фактор». В соответствии с международ­ной номенклатурой факторы свертывания плазмы обозначаются римскими цифрами (табл. 6). Актив­ные формы факторов обозначаются теми же римскими цифрами, но с добавлением аббреви­атуры «а».

Практически все факторы системы сверты­вания крови циркулируют в кровотоке в форме неактивных проэнзимов или в форме неактив­ных кофакторов. Исключение составляет фак-

тор VII, примерно 1-2% которого в норме цир­кулируют в активной форме. При запуске свер­тывания крови происходит каскадная актива­ция проэнзимов и кофакторов (рис. 32). Про­цесс активации представляет собой ограничен­ный протеолиз неактивных предшественников до активных энзимов и кофакторов. Активиро­ванные энзимы являются сериновыми протеа-зами (за исключением фактора XIII). Активи­рованные кофакторы, не обладая самостоятель­ной ферментативной активностью, играют роль коферментов.

Сериновыми протеазами являются активиро­ванные факторы II, VII, IX, X, XI, XII, ПК.

Трансглютаминаза - фактор XIII.

Кофакторы - факторы V, VIII, ВМК.

Содержание компонентов гемостаза, в том чис­ле плазменных факторов свертывания, в системе циркуляции существенно больше, чем необходимо

Таблица 6

Плазменные факторы свертывания крови

При разработке первой номенклатуры были использованы римские символы факторов от I до XIII. Для обо­значения участия в свертывании плазмы тканевого фактора и ионов кальция им были приданы символы соот­ветственно III и IV. Однако в настоящее время римская нумерация для них не используется, так как они не относятся к плазменным факторам свертывания (тканевой фактор - это тканевой компонент вне сосудистой системы, ионы Са не являются белком). Фактор VI в классификации не употребляется, так этим символом ошибочно был назван фактор Va.

Плазменные белки гемостаза

Рис. 32. Протеолитическая активация факторов гемо­стаза. Путем ограниченного протеолиза из неактивного предшественника образуются активный пептид и активиро­ванный фермент

для формирования фибринового сгустка. Процесс свертывания происходит в условиях насыщения субстратами (рис. 33). Вследствие этого образова­ние гемостатического тромба может быть достиг­нуто при значительном диапазоне концентрации и активности конкретного фактора свертывания. Клинические проявления недостаточности компо­нентов свертывания возникают при их существен­ном уменьшении, если обратиться к рис. 33 - то это начальный диапазон, при котором скорость реак­ции зависит от концентрации фактора.

Для эффективного взаимодействия и акти­вации белков свертывания крови необходимо об­разование комплексов этих белков, их кофакто­ров и субстрата (рис. 34). Эти условия не могут возникнуть в жидкой фазе. Поэтому большин­ство процессов активации промежуточных фак­торов свертывания протекают на фосфолипидах клеточных мембран. В месте сборки комплексов происходит концентрация факторов свертыва­ния. Здесь же присутствуют кофакторы, которые существенно ускоряют процесс формирования сгу­стка. В создании активного комплекса участвуют:

  • Фермент (активный плазменный фактор - протеолитический фермент).

  • Субстрат (профермент).

  • Активированный кофактор.

  • Ионы Са (Са2+).

  • Кислые фосфолипиды и специфические ре­ цепторы на поверхности клеток.

Все белки системы свертывания крови мож­но разделить на две группы. Одни белки для пол­ноценного формирования требуют наличия ви­тамина К (витамин-К-зависимые белки), а дру­гие - нет.

Рис. 33. Соотношение между концентрацией факторов и скоростью процесса свертывания. В норме скорость коагуляции практически не определяется концентрацией факторов, так как они присутствуют в избытке и процесс идет в состоянии насыщения. Только после значительного истощения фактора его концентрация будет влиять на ско­рость реакции и соответственно на скорость свертывания плазмы

Рис. 34. Модель сборки комплекса факторов сверты­вания крови. На поверхность твердой фазы (фосфолипи­ды фибробластов, макрофагов, активированных тромбо­цитов либо, в патологических ситуациях, мембраны повреж­денных клеток, бактерий и др,) прикрепляется (интернали-зуется) крупный кофакторный белок, который организует место контакта факторов свертывания, те в свою очередь взаимодействуют друг с другом по принципу комплемен­тарности

Плазменные белки гемостаза

Витамин-К-зависимые белки

Витамин-К-зависимыми белками являются ф.II, -VII, -IX, -X, протеины С и S. Эти белки син­тезируются в печени и имеют сходную структуру молекулы (рис. 35). Характерной их особенностью является наличие уникальной аминокислоты -у-карбоксиглутамина. Эта аминокислота образу­ется во время синтеза витамин-К-зависимых бел­ков в печени путем у-карбоксилирования глута-мина ферментом у-карбоксиглутаминпептидазой, в работе которого принимают участие активиро­ванные формы витамина К (рис. 142). у-карбок-сиглутамин дает возможность витамин-К-зависи-мым белкам с помощью ионов Са2+ образовывать комплексы с кислыми фосфолипидами.

Рис. 35. Структурная организация некоторых плазмен­ных белков системы гемостаза. Стрелками показаны места протеолитического гидролиза, в результате которо­го происходит переход неактивных проферментов в актив­ные ферменты - сериновые протеазы каскада коагуляции. Двузубцем обозначены витамин-К-зависимые факторы, имеющие в своей структуре карбоксилированную глюта-миновую кислоту

Неферментные активаторы свертывания крови

К неферментным активаторам свертывания крови (коферментам) относятся факторы V и VIII. Оба - высокомолекулярные белки, имеющие сход­ную структуру. Они циркулируют в плазме в неак­тивной форме и активируются тромбином. ф.VIII в плазме связан с фактором Виллебранда (vWF), ко­торый защищает его от преждевременной инакти­вации. Диссоциация фVIII из комплекса с vWF про­исходит под воздействием тромбина (рис. 25).

ф.Va и -Villa образуют на фосфолипидных мембранах комплексы с ф.Ха и -IХа соответствен­но. Специфическая активность ф.Ха и -IХа в ком­плексах с кофакторами в десятки тысяч раз боль­ше, чем изолированных. Основным ингибитором ф.Va и -VIIIa является комплекс протеин С - про­теин S.

Классический коагуляционный каскад активации тромбина

Изучение процесса свертывания крови до на­стоящего времени происходит в основном in vitro в смоделированных условиях. Исследование вза­имодействия плазменных белков гемостаза в от­рыве от других компонентов привело к созданию так называемой «классической» теории коагуля-ционного каскада активации тромбина. В насто-

ящее время эта теория пересмотрена с учетом вновь полученной информации о взаимодействии различных компонентов гемостаза. Однако базо­вые принципы изложенной ниже классической каскадной теории считаются верными до настоя­щего времени. Кроме того, знание классического каскада свертывания крови необходимо для пра-

Плазменные белки гемостаза

вильнои интерпретации результатов коагулоло-гических тестов.

Активация протромбина - многостадийный процесс, который происходит по механизму про-ферментно-ферментного преобразования. С одной стороны, это обеспечивает нарастание сигнала: активация одной молекулы предшествующего уровня в системе свертывания приводит к акти­вации от нескольких десятков до нескольких со­тен тысяч последующих молекул (рис. 36). С дру­гой стороны, многостадийность позволяет бо­лее гибко регулировать процесс.

В классическом каскаде свертывания крови выделяют 2 пути активации процесса:

Рис. 36. Каскадный принцип усиления сигнала. Каждый предыдущий компонент системы свертывания активирует много последующих


  • Активация тканевым фактором (ТФ). Так как ТФ не относится к плазменным факторам и контактирует с кровью только при повреж­ дении сосуда, то активация с его участием обозначается как внешний путь свертывания.

  • Активация ф.ХII при контакте с отрицатель­ но заряженной поверхностью твердого тела, или контактная активация. Поскольку фак­ тор XII в норме присутствует в плазме, акти­ вация с его участием обозначается как внут-

ренний путь свертывания (все факторы при­сутствуют в плазме в норме). Внешний и внутренний пути взаимодействуют между собой, а их разделение достаточно условно. Внешний и внутренний пути сходятся на факто­ре X. Последний со своим кофактором ф.Vа обра­зует протромбиназу - ферментативный комплекс, который активирует протромбин с образованием тромбина. Образовавшийся тромбин поступает в ток крови и активирует фибриноген до фибрин-мо­номеров. Последние спонтанно соединяются, обра­зуя полимеры фибрина. Условно свертывание плаз­мы (крови) делится на 2 основные фазы: