Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
nestudent.ru_46905.doc
Скачиваний:
22
Добавлен:
12.09.2019
Размер:
2.07 Mб
Скачать

Разновидности б‑деревьев

Существует несколько разновидностей Б‑деревьев, из которых здесь описаны только некоторые. Нисходящие Б‑деревья (top‑down B‑trees) немного иначе управляют структурой Б‑дерева. За счет разбиения встречающихся полных узлов, эта разновидность алгоритма использует при вставке элементов более наглядную нисходящую рекурсию вместо восходящей. Эта также уменьшает вероятность возникновения длительной последовательности разбиений блоков.

Другой разновидностью Б‑деревьев являются Б+деревья (B+trees). В Б+деревьях внутренние узлы содержат только ключи данных, а сами записи находятся в листьях. Это позволяет Б+деревьям хранить в каждом блоке больше элементов, поэтому такие деревья короче, чем соответствующие Б‑деревья.

Нисходящие б‑деревья

Подпрограмма, которая добавляет новый элемент в Б‑дерево, вначале выполняет рекурсивный поиск по дереву, чтобы найти блок, в который его нужно поместить. Когда она пытается вставить новый элемент на его место, ей может понадобиться разбить блок и переместить один из элементов узла в его родительский узел.

При возврате из рекурсивных вызовов процедуры, вызывающая процедура проверяет, требуется ли разбиение родительского узла. Если да, то элемент помещается в родительский узел. При каждом возврате из рекурсивного вызова, вызывающая процедура должна проверять, не требуется ли разбиение следующего предка. Так как эти разбиения блоков происходят при возврате из рекурсивных вызовов процедура, это восходящая рекурсия, поэтому иногда Б‑деревья, которыми манипулируют таким образом, называются восходящими Б‑деревьями (bottom‑up B‑trees).

Другая стратегия состоит в том, чтобы разбивать все полные узлы, которые встречаются процедуре на пути вниз по дереву. При поиске блока, в который нужно поместить новый элемент, процедура разбивает все повстречавшиеся полные узлы. При каждом разбиении узла, она помещает один из его элементов в родительский узел. Так как она уже разбила все выше расположенные полные узлы, то в родительском узле всегда есть место для нового элемента.

Когда процедура доходит до листа, в который нужно поместить элемент, то в его родительском узле всегда есть свободное место, и если программе нужно разбить лист, то всегда можно поместить средний элемент в родительский узел. Так как при этом процедура работает с деревом сверху вниз, Б‑деревья такого типа иногда называются нисходящими Б‑деревьями (top‑down B‑trees).

При этом разбиение блоков происходит чаще, чем это абсолютно необходимо. В нисходящем Б‑дереве полный узел разбивается, даже если в его дочерних узлах достаточно много свободного места. За счет предварительного разбиения узлов, при использовании нисходящего метода в дереве содержится больше пустого пространства, чем в восходящем Б‑дереве. С другой стороны, такой подход уменьшает вероятность возникновения длительной последовательности разбиений блоков.

К сожалению, не существует нисходящей версии для слияния узлов. При продвижении вниз по дереву, процедура удаления узлов не может объединять встречающиеся наполовину пустые узлы, потому что в этот момент еще неизвестно, нужно ли будет объединить два дочерних узла и удалить элемент из их родителя. Так как неизвестно также, будет ли удален элемент из родительского узла, то нельзя заранее сказать, потребуется ли слияние родителя с одним из узлов, находящимся на том же уровне.

==========176

Б+деревья

Б+деревья часто используются для хранения больших записей. Типичное Б‑дерево может содержать записи о сотрудниках, каждая из которых может занимать несколько килобайт памяти. Записи могли бы располагаться в Б‑дереве в соответствии с ключевым полем, например фамилией сотрудника или его идентификационным номером.

В этом случае упорядочение элементов может быть достаточно медленным. Чтобы слить два блока, программе может понадобиться переместить множество записей, каждая из которых может быть достаточно большой. Аналогично, для разбиения блока может потребоваться переместить множество записей большого объема.

Чтобы избежать перемещения больших блоков данных, программа может записывать во внутренних узлах Б‑дерева только ключи. При этом узлы также содержат ссылки на сами записи данных, которые записаны в другом месте. Теперь, если программе требуется переупорядочить блоки, то нужно переместить только ключи и указатели, а не сами записи. Этот тип Б‑дерева называется Б+деревом (B+tree).

То, что элементы в Б+дереве достаточно малы, также позволяет программе хранить больше ключей в каждом узле. При том же размере узла, программа может увеличить порядок дерева и сделать его более коротким.

Например, предположим, что имеется Б‑дерево 2 порядка, то есть каждый узел имеет от трех до пяти дочерних узлов. Такое дерево, содержащее миллион записей, должно было бы иметь высоту между log5(1.000.000) и log3(1.000.000), или между 9 и 13. Чтобы найти элемент в таком дереве, программа должна выполнить от 9 до 13 обращений к диску.

Теперь допустим, что те же миллион записей находятся в Б+дереве, узлы которого имеют примерно тот же размер в байтах. Поскольку в узлах Б+дерева содержатся только ключи, то в каждом узле дерева может храниться до 20 ключей к записям. В этом случае, каждый узел будет иметь от 11 до 21 дочерних узлов, поэтому высота дерева будет от log21(1.000.000) до log11(1.000.000), или между 5 и 6. Чтобы найти элемент, программе понадобится всего 6 обращений к диску для нахождения его ключа, и еще одно обращение к диску, чтобы считать сам элемент.

В Б+деревьях также просто связать с набором записей множество ключей. В системе, оперирующей записями о сотрудниках, одно Б+дерево может использовать в качестве ключей фамилии, а другое — идентификационные номера социального страхования. Оба дерева будут содержать указатели на записи данных, которые будут находиться за пределами деревьев.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]