Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗАМЕН1.docx
Скачиваний:
469
Добавлен:
10.08.2017
Размер:
266.93 Кб
Скачать

46. История открытия и изучения фотосинтеза.

Фотосинтез - это процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединений. Главную роль в этом процессе играет использование энергии света для восстановления СО2 до уровня углеводов.

В 1727 Гейлс предположил, что растения получают часть питания из воздуха. В 1757 Ломоносов высказал подобные мысли. Пристли в 1771 г. обнаружил, что растения мяты, помещенные в стеклянный кувшин, опрокинутый в сосуд с водой, используют в нем воздух, «испорченный» горением свечи или дыханием мыши. Ингенхауз показал, что зеленые растения выделяют кислород только при действии на них света. Зеленые растения в темноте, а их незеленые органы (например, корни) в темноте и при освещении поглощают кислород точно так же, как животные в процессе дыхания. Применив методы количественного анализа, швейцарский ученый Соссюр в 1804 г. показал, что растения на свету действительно усваивают углерод С02, выделяя при этом эквивалентное количество кислорода. Соссюр сделал вывод, что органическая масса растения образуется не только за счет С02, но и за счет воды. Французские химики Пельтье и Каванту в 1817 г. выделили из листьев зеленый пигмент и назвали его хлорофиллом, который, как выяснилось позднее, целиком локализован в хлоропластах. В 1865 г. немецкий физиолог растений Сакс продемонстрировал, что на свету в листьях образуется крахмал и что он находится в хлоропластах. Опыты ставили следующим образом. Листья предварительно выдерживали в темноте, затем освещали половинку каждого листа, а другую половинку, закрытую плотным картоном, оставляли в темноте. После экспозиции листья обесцвечивали спиртом и обрабатывали раствором йода. Освещенные части листьев становились темно-фиолетовыми из-за образования комплекса крахмала с йодом, а затемненные участки оставались неокрашенными.

Тимирязев изучал влияние света, установил что интенсивность ассимиляции С02 максимальна при освещении листьев красным светом, т. е. тем светом, который в наибольшей степени поглощается хлорофиллом. Он сформулировал также идею о космической роли фотосинтеза: фотосинтез — единственный процесс, с помощью которого космическая солнечная энергия улавливается и остается на Земле, трансформируясь в другие формы энергии. Тимирязев писал, что в хлоропласте лучистая энергия солнечного света превращается в химическую энергию углеводов. Крахмал, клейковина и другие соединения, консервирующие солнечную энергию, служат нам пищей.

Результаты изучения воздушного питания растений за первые сто лет после опытов Пристли нашли свое выражение в общем уравнении фотосинтеза: 6CO2+6H2O+hv+хлорофилл à C6H12O6 +6O2.

47. Хлоропласты и их роль в процессе фотосинтеза; структура хлоропластов. Движения хлоропластов. Неассимилирующие хлоропласты.

Хлоропласты высших растений имеют форму двояковыпуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение в клетке также полностью отвечают назначению: как можно эффективнее поглощать солнечную энергию, как можно полнее усваивать углерод. Хлоропласты способны к активным движениям — изменению ориентации тела и перемещению в пространстве. Их передвижения вызываются физическими и химическими факторами, например, под влиянием яркого света хлоропласты поворачиваются узкой стороной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропластам присуща также хемотаксическая чувствительность — они передвигаются в направлении более высокой концентрации СО2 в клетке. Установлен и эндогенный суточный ритм движения хлоропластов: днем они обычно выстраиваются вдоль стенок, ночью опускаются на дно клетки.

Строение хлоропласта, обнаруживаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс, или строма, которую пронизывают мембраны — ламеллы. Ламеллы, соединенные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей — тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов. Внутренность хлоропласта заполнена многокомпонентными биоколлоидами-стромой. Основную массу хлоропластов составляют белки и липиды, входят пигменты, отдельные элементы, нуклеиновые к-ты, углеводы и др в-ва, ферменты, в том числе протеиды(Fe,Cu), витамины.

При выращивании с/х растений следует иметь в виду, что на структуру хлоропластов, а следовательно, и их функциональную активность большое влияние оказывает режим минерального питания растений. При недостатке азота хлоропласты становятся в 1,5—2 раза мельче, дефицит фосфора и серы нарушает нормальную структуру ламелл и гран, одновременная нехватка азота и калия приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке кальция нарушается структура наружной мембраны хлоропласта. Для поддержания структуры хлоропласта также необходим свет. В темноте идет постепенное разрушение тилакоидов гран и стромы.

Неассимилирующие хлоропласты это хлоропласты стареющих листьев.

Соседние файлы в предмете Физиология и биохимия растений