Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗАМЕН1.docx
Скачиваний:
468
Добавлен:
10.08.2017
Размер:
266.93 Кб
Скачать

10. Методы учёта транспирации. Единицы измерения транспирации: интенсивность, экономичность, продуктивность транспирации, относительная транспирация. Транспирационный коэффициент.

Методы измерения интенсивности транспирации растений подразделяют на две группы. Первую составляют методы, основанные на учёте массы исследуемого объекта через заданные промежутки времени или непрерывно. Метод быстрого взвешивания отчлененного от растения листа или побега. Первое взвешивание проводят сразу после срезания, а второе — через 3—5 мин, что дает возможность измерять транспирацию при том состоянии насыщенности листа водой, в каком он находился на растении.

Методы второй группы основаны на учете величины потока водяного пара, поступающего из растения. В этом случае всю надземную часть растения или лист помещают в транспирационную камеру, через которую непрерывно прокачивают воздух. Пробы воздуха с входа и выхода камеры подаются в измерительное устройство, что позволяет регистрировать увеличение влажности воздуха в результате транспирации. Кол-во воды, испаряемой растением с единицы листовой поверхности в единицу времени, называют интенсивностью транспирации. Выражается в г/1м2 или 1см2 за 1час. Испаряемую воду можно отнести к массе листьев. Это также будет показателем интенсивности транспирации.

Продуктивность транспирации — количество граммов сухих веществ, образуемых при расходовании каждых 1000 г воды. Величиной, обратной продуктивности и транспирации, является транспирационный коэффициент, т. е. число граммов воды, израсходованной при накоплении 1 г сухих веществ. Интенсивность транспирации у большинства растений составляет 15-250 г*м2*ч днем и 1-20 г*м2*ч ночью. Продуктивность транспирации у растений в умеренном климате колеблется от 1 до 8 (в среднем 3 г) на 1000 г израсходованной воды, а транспирацинонный коэффициент — от 125 до 1000 (в среднем, около 300 т.е. около 300 г воды расходуется на накопление 1 г сухих веществ). Следовательно, на синтез веществ своего тела растение использует лишь 0.2% пропускаемой воды, остальные 99.8% тратятся на испарение.

Относительная транспирация – отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени. Экономность транспирации - количество испаряемой воды (в мг) на единицу (1кг) воды, содержащейся в растениях .Тонколистные растения расходуют за час больше воды по сравнению с растениями с мясистыми листьями, которые испаряют 8-20% от общего количества содержащейся в них воды. Транспирационный коэффициент показывает, сколько воды растения затрачивают на построение единицы сухого в-ва. Это величина, обратная продуктивности транспирации.

11. Особенности суточного хода движения устьиц у разных растении. Суточный ход процесса транспирации.

Английский исследователь Лофтфельд разделил все растения в отношении суточного хода устьичных движений на 3группы: 1.Растения, у которых ночью устьица всегда закрыты, утром устьица открываются, и их дальнейшее поведение в течении дня зависит от условий среды. Мало воды-они закрываются, достаточно воды-открыты. К этой группе относят прежде всего хлебные злаки. 2.Растения, у которых ночное поведение устьиц зависит от дневного. Если днем устьица были закрыты, то ночью они откроются, если днем были открыты, то ночью закроются. К этой группе относят растения с тонкими листьями-люцерна, грох, клевер, свекла, подсолнечник. 3.Растения с более толстыми листьями, у которых ночью устьица всегда открыты, а днем, как и у всех остальных групп растений, открыты или закрыты в зависимости от условий (картофель, капуста). Что касается суточного хода транспирации, то в ночной период суток транспирация резко сокращается. Это связано как с изменением внешних факторов (повышение влажности воздуха, снижение температуры, отсутствие света), так и с внутренними особенностями (закрытие устьиц). Измерения показывают, что ночная транспирация составляет всего 3-5%от дневной.

У деревьев, теневыносливых растений, многих злаков с совершенной регуляцией устьичной транспирации испарение воды достигает максимума до установления максимума дневной температуры. В полуденные часы транспирация падает и вновь может увеличиваться в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов, способных переносить резкие изменения содержания воды в клетках в течение дня, наблюдается суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна. Колебания интенсивности транспирации отражают изменения степени открытия устьиц в течение суток. Закрывание устьиц в полдень может быть связано как с увеличением уровня СО2 в листьях при повышении температуры воздуха (из-за усиления дыхания и фотодыхания, так и с возможным водным дефицитом, возникающим в тканях при высокой температуре, низкой влажности воздуха и особенно в ветреную погоду. Снижение температуры воздуха во второй половине дня способствует открыванию устьиц и усилению фотосинтеза.

12. Основные закономерности поступления воды в растение. Возникновение градиента водного потенциала в растении. Градиент водного потенциала как движущая сила водного тока в растении. Понятие водного потенциала, и его составляющие.

В почве вода поглощается корнями. Корень делится на четыре зоны: деления клеток, растяжения, всасывания, или корневых волосков, и проводящую, или опробковения. Зона деления клеток, защищенная корневым чехликом, нуждается в небольшом количестве воды. Водный потенциал определяется только матричными силами, т. е. способностью к набуханию коллоидов протоплазмы и клеточных стенок (у = ут). Интенсивное поглощение воды начинается с зоны растяжения. Здесь идет усиленное новообразование белков цитоплазмы. Поэтому водный потенциал определяется суммой матричного и осмотического потенциалов (у = уот + уп) и обеспечивает колоссальную способность поглощать воду. Зона корневых волосков является основной поглощающей зоной корня, которая направляет воду в русло дальнего транспорта. Здесь на 1 мм находится 230—500 корневых волосков (у = уп + ур). Проводящая зона корня характеризуется опробковением покровных тканей. Ее поглотительная функция заметно снижена, хотя показано, что опробковевшие части корня также могут поглощать воду.

Некоторое количество воды может поступать из атмосферы. Есть даже растения, для которых атмосферная влага является основным источником. К таким растениям относят прежде всего эпифиты, живущие на поверхности других растений, но не являющиеся паразитами. Они обладают воздушными корнями, в которых имеется многослойная ткань, состоящая из полых клеток с тонкими стенками. Такое строение позволяет им поглощать как парообразную влагу, так и воду осадков, подобно губке. У некоторых эпифитов дождевая вода собирается листьями и затем поглощается с помощью волосков. Приспособления к сбору дождевой воды листьями имеются и у других растений, например, у сем. зонтичные вода собирается в листовых влагалищах.

Водный потенциал выражает способность воды в данной системе совершить работу по сравнению с той работой, которую при тех же условиях совершила бы чистая вода. Водный потенциал определяют как вели­чину, равную разности химических потенциалов воды в системе ( ) И чистой воды () При той же температуре и том_же давлении, отнесенную к величине парциального молярного объема воды (), ψ =.

Водный потенциал, являясь фактически мерой активности воды, определяет термодинамически возможное направление ее транспорта. Молекулы воды всегда перемещаются от более высокого водного потенциала к более низкому, подобно тому как вода течет вниз, переходя на все более низкий энергетический уровень. Когда система находится в равновесии с чистой водой, у=0. В почве, растении, атмосфере активность воды и способность совершать работу ниже, чем у чистой воды, поэтому у обычно отрицателен. Водный потенциал имеет размерность энергии, деленной на объем, что позволяет выражать его в атмосферах, барах или паскалях.Водный потенциал растения является алгебраической суммой следующих четырех составляющих:

где уя — осмотический, \|/;я — матричный, ур — гидростатический, у8— гравитационный потенциалы. Соотношение между ними и вклад в водный потенциал сильно различаются в зависимости от объекта и окружающих условий.

13. Верхний и нижний концевые двигатели водного тока. Гуттация и плач растений. Передвижение воды по растению. Апопласт и симпласт. Теория сцепления. Когезия и адгезия.

Концевые двигатели восходящего тока — нижний (корневое давление) и верхний (присасывающее действие транспирации) взаимосвязаны, а также имеют связь с другими процессами жизнедеятельности, что обеспечивается сложной системой эндогенной регуляции. Путь, который проходит вода в растении, можно разделить на две физиологически различные части: по живым клеткам и по проводящей системе. Радиальный транспорт воды в корне включает три системы: симпласт — совокупность протопластов всех клеток, соединенных плазмодесмами, апопласт, т. е. взаимосвязанную систему клеточных стенок и межклетников, а также дискретную систему вакуолей. Все они в большей или меньшей степени связаны с преодолением мембран. Даже путь воды по апопласту прерывается в эндодерме, где вода вынуждена проходить через живое содержимое пропускных клеток, из-за гидрофобных отложений в радиальных клеточных стенках, образующих пояски Каспари. Эта необходимость переключения на симпластический путь имеет большое значение, так как процесс передвижения по живой протоплазме может регулироваться в отличие от передвижения по клеточным стенкам. Следует отметить, что мертвые клетки обладают гораздо большей проницаемостью для воды, чем живые. Для нормального водообмена растения клетки корня должны оставаться живыми, их высокое сопротивление водному току вполне оправданно. Высокое сопротивление мембран, обладающих избирательной проницаемостью, позволяет корню контролировать ток воды в растении. Большая часть водного пути приходится на долю проводящей системы растения, состоящей из сосудов и трахеид. Установлено также, что вода и растворенные вещества могут передвигаться в стебле и в поперечном направлении. Это происходит, например, при подрезке корней или обрезке ветвей, в таком случае растение в состоянии обеспечить водой и веществами те части организма, которые раньше обслуживались утраченными органами. Возможность радиального транспорта обусловлена самой структурой проводящей системы, а именно: контактами сближающих трахеид через поры.

Примером работы нижнего концевого двигателя служит так называемый «плач» растений. Весной у деревьев с еще нераспустившимися листьями можно наблюдать интенсивный кселемный ток жидкости снизу вверх через надрезы ствола и даже верхних веток кроны. Явление «плача» свидетельствует о значительном корневом давлении, которое в этот период у основания ствола достигает не менее 10 атм. У вегитируюших растении при удалении стебля с листьями из оставшегося связанного с корнем пенька довольно долго выделяется ксилемный сок или пасока. Другим примером работы нижнего концевою двигателя является гуттация. При высокой влажности воздуха в результате деятельности нижнего концевого двигателя на концах и зубчиках листьев выделяется капельно-жидкая влага — растение гуттирует. Гутационное выделение влаги листьями особенно характерно для тропических растений, приспособленных к жизни в условиях повышенной влажности, при которых транспирация затруднена. В этих условиях подъем воды практически осуществляется только вследствие корневого давления. Под такими деревьями в тропическом лесу как будто постоянно идет дождь. Функцию выделения жидкости из тканей листьев выполняют специальные образования гидатоды. локализованные в зубчиках листьев.

Теория сцепления. Движущей силой восходящею тока воды в проводящих элементах ксилемы являемся градиент водного потенциала через растение от почвы до атмосферы. Он поддерживается двумя основными компонентами: 1) градиентом осмотического потенциала в клетках корня (от почвы до сосудов ксилемы), создаваемым активным транспортом ионов в живых клетках корня, включая молодые живые элементы ксилемы и 2) транспирацией. Поддержание первого градиента требует затрат метаболической энергии; на транспирацию используется энергия солнечной радиации. Градиент осмотическою потенциала обеспечивает поглощение воды корнем. Транспирация служит главной движущей силой восходящего тока воды.Согласно теории сцепления, вода в капиллярных трубках сосудов ксилемы поднимается вверх в ответ на присасывающее действие транспирации вследствие действия сил сцепления (когезии) молекул воды друг с другом и действия сил прилипания (адгезии) столба воды к гидрофильным стенкам сосудов. Обе силы препятствуют также образованию полостей у стенок сосудов, заполненных воздухом (или парами воды) и способных закупорить сосуд. При закупорке (эмболии) сосудов пузырьками воздуха всегда остается достаточное количество интактных нитей воды в других сосудах, чтобы обеспечить ток вверх. Кроме того. по-видимому, существуют механизмы восстановления непрерывности нарушенных эмболией водных нитей.

Соседние файлы в предмете Физиология и биохимия растений