
- •Основы молекулярно-кинетической теории.
- •Тепловое явление. Уравнение состояния идеального газа. Изопроцессы
- •Внутренняя энергия. Термодинамика.
- •Принцип действия тепловых двигателей. Кпд теплового двигателя и его максимальное значение. Тепловые двигатели и охрана природы.
- •Испарение и конденсация. Насыщенные и ненасыщенные пары. Кипение жидкости. Зависимость температуры кипения от давления.
- •Влажность воздуха. Точка росы. Относительная влажность.
- •Деформация
- •Плавление тел. Удельная теплота плавления. Кристаллизация тел. Уравнение теплового баланса.
- •Кристаллические и аморфные тела. Свойства твердых тел.
- •Упругие деформации. Закон гука для растяжения.
- •Основы электродинамики.
- •Электрическое поле
- •Глава . Электродинамика Электрическое поле
- •Работа в электрическом поле. Потенциал
- •П pоводники в электpостатическом поле
- •Диэлектpики в электpическом поле
- •Электроемкость. Конденсаторы
- •Постоянный электрический ток. Электрический ток. Сила тока
- •Сопротивление
- •Измерение силы тока и напряжения
- •Электрические цепи. Последовательное и параллельное соединение проводников.
- •Работа и мощность постоянного тока
- •Электродвижущая сила
- •Закон ома для полной цепи
- •Электрический ток в металлах
- •Электрический ток в вакууме. Диод. Ток в вакууме.
- •Электрический ток в газах
- •Ионизация газов. Несамостоятельный газовый разряд.
- •Самостоятельный газовый разряд и его типы.
- •Электрический ток в полупроводниках
- •Магнитное поле Магнитное взаимодействие токов
- •Магнитное поле
- •Магнитное поле в веществе
- •Электромагнитная индукция. Правило Ленца.
- •Магнитные поля различной конфигурации
- •Электромагнитная индукция
- •Механические колебания и волны Механические колебания Гармонические колебания
- •Свободные колебания. Пружинный маятник.
- •Свободные колебания. Математический маятник.
- •Превращения энергии при свободных механических колебаниях
- •Механические колебания и волны Механические колебания Вынужденные колебания. Резонанс. Автоколебания
- •Механические волны.
- •Эффект Доплера .
- •Доплер-эффект широко используется в технике для измерения скоростей движущихся объектов («доплеровская локация» в акустике, оптике и радио).
- •Развитие представлений о свете.
- •Законы геометрической оптики Прямолинейность распространения света. Принцип Ферма
- •Отражение света. Плоское зеркало.
- •Сложение гармонических колебаний.
- •Метод зон Френеля.
- •Поглощение света.
- •Рассеяние света.
- •Дисперсия света. Призматический и дифракционный спектры.
- •Спектральный анализ
- •Поглощение света
- •З аконы теплового излучения. Закон Кирхгофа.
- •Инфракрасные лучи
- •Ультрафиолетовые лучи
- •Рентгеновские лучи
- •Виды и источники электромагнитных излучений
- •Применение электромагнитных излучений
- •Световые кванты. Давление света.
- •Химическое действие света
- •Процесс фотосинтеза
- •Фотография. Первые в мире снимки
- •Снимок Ньепса
- •Снимок Тальбота
- •Снимок Дагера
- •Совершенствование и развитие фотографии
- •Пpеобpазования Лоpенца
- •Релятивистская динамика
- •Современная физическая картина мира.
Свободные колебания. Пружинный маятник.
Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.
Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:
|
F(t) = ma(t) = –mω2x(t). |
|
В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:
|
Fупр = –kx. |
|
Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.
Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.
|
|
Круговая частота ω0 свободных колебаний груза на пружине находится из второго закона Ньютона:
|
|
|
откуда
|
|
|
Частота ω0 называется собственной частотой колебательной системы.
Период T гармонических колебаний груза на пружине равен
|
|
|
При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную
|
|
|
и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае.
Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:
|
|
|
Поэтому второй закон Ньютона для груза на пружине может быть записан в виде
|
|
|
или
|
|
(*) |
где
Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида
|
|
|
Уравнение (*) называется уравнением свободных колебаний. Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T. Такие параметры процесса колебаний, как амплитуда xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.
Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ0 = 0.
Если же грузу,
находившемуся в положении равновесия,
с помощью резкого толчка была сообщена
начальная скорость ± υ0,
то
,
Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ0 определяются начальными условиями. Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил Mупр упругой деформации кручения:
|
Mупр = –χθ. |
|
Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k. Второй закон Ньютона для вращательного движения диска записывается в виде
|
|
|
где I = IC – момент инерции диска относительно оси, проходящий через центр масс, ε – угловое ускорение.
По аналогии с грузом на пружине можно получить:
|
|
|
Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.
|
. Крутильный маятник. |