
- •Рецензенти:
- •Передмова
- •Розділ і висловлення і операції над ними. Предикати § 1. Висловлення і операції над ними. Елементи математичної логіки
- •1. Вступ
- •2. Висловлення. Прості і складені висловлення
- •Предикати (висловлювальні форми)
- •Квантори
- •§ 2. Структура і види теорем
- •1. Структура теореми
- •2. Види теорем
- •3. Найпростіші схеми правильних міркувань
- •§ 3. Математичні поняття. Особливості математичних понять. Об'єм і зміст поняття. Означення понять. Структура означення понять через рід і видову відмінність
- •1. Поняття як форма мислення. Особливості математичних понять
- •2.Зміст і обсяг поняття, відношення між ними
- •Способи означення математичних понять
- •4. Вимоги до логічно правильних означень понять
- •5. Приклади математичних понять, які розглядаються в початковому курсі математики
- •Питання для самоконтролю
- •Система вправ
- •Розділ іі множини, операції над ними. Відношення § 4. Множини, операції над ними
- •Поняття множини і елемента множини. Порожня множина. Способи задання множин
- •Підмножина. Рівні множини. Зображення множин і зв’язків між ними за допомогою кругів Ейлера
- •Числові множини. Запис числових проміжків
- •Переріз і об’єднання множин. Закони цих операцій. Доповнення підмножини
- •Декартів добуток двох множин. Зображення декартового добутку двох числових множин на координатній площині
- •Властивості декартового добутку:
- •6. Поняття розбиття множини на підмножини, що попарно не перетинаються. Класифікація понять. Приклади класифікацій
- •§ 5. Відношення та відповідність
- •Поняття відношення. Граф відношення
- •Способи задання відношень
- •Властивості відношень
- •Відношення еквівалентності
- •Відношення порядку
- •Поняття відповідності
- •Способи задання відповідностей
- •Відповідність, обернена даній
- •Взаємно однозначні відповідності
- •Рівнопотужні множини
- •Питання для самоконтролю
- •Система вправ
- •Коротка історія розвитку поняття числа
- •Визначення натурального числа і нуля
- •Теоретико-множинний зміст кількісного натурального числа і нуля
- •Порівняння натуральних чисел
- •Властивості множини цілих невід’ємних чисел
- •Тема. Додавання цілих невід’ємних чисел
- •Теоретико-множинний смисл суми двох цілих невід’ємних чисел
- •Існування суми, її єдиність
- •Сума декількох доданків
- •Закони додавання
- •Тема. Віднімання цілих невід’ємних чисел
- •Теоретико-множинний смисл різниці двох цілих невід’ємних чисел
- •Означення різниці через суму. Зв’язок дії віднімання з дією додавання
- •Умови існування різниці, її єдиність
- •Правила віднімання
- •Відношення «більше на», «менше на»
- •Тема. Текстова задача. Способи розв’язування текстових задач. Прийоми пошуку плану розв’язування текстових задач, способи запису і перевірки. Прості текстові задачі на додавання і віднімання
- •Тема. Множення цілих невід’ємних чисел
- •1. Визначення добутку двох цілих невід’ємних чисел як числа елементів декартового добутку двох скінченних множин
- •2. Визначення добутку цілих невід’ємних чисел через суму. Операція множення цілих невід’ємних чисел
- •3. Визначення добутку декількох множників
- •Існування добутку, його єдиність
- •5.Закони множення: комутативний, асоціативний, дистрибутивний
- •Тема. Ділення на множині цілих невід’ємних чисел
- •2. Зв’язок ділення з множенням
- •3. Існування частки, її єдиність
- •4. Правила ділення
- •1. Правило ділення суми на число.
- •6. Ділення цілого невід’ємного числа на натуральне з остачею
- •Тема. Прості задачі на множення та ділення
- •V. Задачі на знаходження невідомого компонента арифметичної дії:
- •§7. Десяткова система числення
- •1. Десяткова система числення
- •Порівняння чисел у десятковій системі числення:
- •2. Додавання і віднімання багатоцифрових чисел в десятковій системі числення багатоцифрових чисел Алгоритм додавання цілих невід’ємних чисел у десятковій системі числення
- •Віднімання цілих невід’ємних чисел у десятковій системі числення
- •3. Множення і ділення багатоцифрових чисел в десятковій системі числення багатоцифрових чисел
- •§ 8. Подільність цілих невід’ємних чисел
- •1. Відношення подільності на множині натуральних чисел, його властивості
- •Рефлексивність.
- •Антисиметричність.
- •Транзитивність.
- •2. Теореми про подільність суми, різниці, добутку
- •3. Ознаки подільності на 2 і 5, 4 і 25, 3 і 9, на складені числа
- •4. Найбільший спільний дільник і найменше спільне кратне натуральних чисел, способи їх знаходження
- •Способи знаходження найбільшого спільного дільника і найменшого спільного кратного
- •§ 9. Позиційні і непозиційні системи числення
- •1. Позиційні і непозиційні системи числення
- •2. Дії над числами в позиційних системах числення, відмінних від десяткової
- •Питання для самоконтролю
- •Система вправ
- •Розділ IV раціональні і дійсні числа § 10. Раціональні числа. Дії над ними та їх властивості
- •Поняття про вимірювання відрізків. Розширення множини цілих невід’ємних чисел
- •Дроби та їх властивості
- •3. Визначення арифметичних дій над додатними раціональними числами
- •Закони додавання і множення
- •5. Упорядкованість множини додатних раціональних чисел
- •6. Запис додатних раціональних чисел у вигляді десяткових дробів
- •§ 11. Дійсні числа та дії над ними
- •1. Несумірні відрізки і ірраціональні числа. Невід’ємні дійсні числа
- •2. Арифметичні дії над дійсними невід’ємними числами. Їхні властивості
- •Від’ємні числа. Множина дійсних чисел
- •Питання для самоконтролю
- •Система вправ
- •Розділ V рівності і нерівності, рівняння. Функції § 12. Математичні вирази. Рівності і нерівності
- •Алфавіт математичної мови
- •Числові вирази. Значення числового виразу
- •Вирази зі змінною
- •Тотожні перетворення виразів
- •Числові рівності, властивості істинних числових рівностей
- •Числові нерівності, властивості істинних числових нерівностей
- •§ 13. Рівняння та їх властивості. Нерівності, що містять змінну
- •Рівняння з однією змінною
- •Рівносильність рівнянь
- •Нерівності з однією змінною
- •Рівносильність нерівностей
- •§ 14. Функції, графіки та їх властивості
- •Поняття функції. Графік функції
- •2. Лінійна функція
- •3. Пряма пропорційність
- •Обернена пропорційність
- •Функціональна пропедевтика в початковій школі
- •Іі етап
- •Питання для самоконтролю
- •Система вправ
- •Розділ VI величини та їх властивості § 15. Поняття величини та її вимірювання
- •Поняття вимірювання величин. Основні властивості числових значень додатніх скалярних величин
- •Величини, що вивчаються в курсі математики і – іv класів
- •§ 16. Довжина відрізка, її властивості і вимірювання
- •§ 17. Площа фігури, її властивості і вимірювання
- •Щоб обчислити площу прямокутника, треба визначити його довжину і ширину та знайти добуток цих чисел.
- •§ 18. Об’єм тіла, його властивості і вимірювання
- •§ 19. Маса тіла і її вимірювання
- •§ 20. Час та його вимірювання
- •§ 21. Вартість та залежність між величинами: ціна, кількість, вартість
- •Питання для самоконтролю
- •Система вправ
- •Точка, пряма, їх властивості
- •Властивості:
- •Властивості:
- •3.2. Означеня кута
- •Властивості вимірювання кутів:
- •Види кутів
- •4. Трикутники
- •5. Коло, круг
- •6.Многокутники
- •Властивості паралелограма:
- •Властивості квадрата:
- •Властивості ромба:
- •7. Многогранники і тіла обертання
- •Питання для самоконтролю
- •Система вправ
- •Література
- •Джерела інформації
Тема. Додавання цілих невід’ємних чисел
План
Теоретико-множинний смисл суми двох цілих невід’ємних чисел.
Існування суми, її єдиність.
Сума декількох доданків.
Закони додавання.
Теоретико-множинний смисл суми двох цілих невід’ємних чисел
Розглянемо дві задачі.
1) «На тарілці лежать 3 груші і 5 яблук. Скільки всього фруктів на тарілці?»
Задача розв’язується виразом на додавання 3 + 5 = 8, бо мова йде про об’єднання двох множин: множини груш (число елементів – 3) та множини яблук (число елементів – 5). Ці множини не перетинаються. Щоб знайти, скільки всього фруктів на тарілці, треба об'єднати множини груш та яблук і полічити, скільки всього елементів у цьому об’єднанні. Число елементів об’єднання даних множин дорівнює 8; тобто 8 фруктів на тарілці.
2) «Знайти кількість елементів в об’єднанні множин A = {k, l, m, n} та B = {n, o, p}».
Розв’язання.
Кількість елементів множини A:
n
(A)
= 4, а кількість елементів множини B:
n
(B)
= 3. За означенням A
B
= {k,
l,
m,
n,
o,
p}
n(A
B)
= 6. Але n
(A
B)
≠ 4 + 3. Чому? Тому, що А
В
= {n}
і, отже,
n (A) + n (B) ≠ n (A B).
Звідси, суму цілих невід’ємних чисел визначають через об’єднання двох множин, що не перетинаються.
Означення. Сумою двох цілих невід’ємних чисел а і b називається число елементів в об’єднанні множин А і В, які не перетинаються і таких, що n (А) = а, п (В) = b, тобто а + b = п (А В), де а = п (А), b = п (В), А В = .
Сума
не
залежить від вибору двох множин, що не
перетинаються, але таких, що n
(A)
= a
і
n
(B)
= b.
Приклади:
1) A = {a, b}, B = {c, d} A B = {a, b, c, d} і А В = , отже, n (A B) = n (A) + n (B) = 2 + 2 = 4, де n (A) = 2, n (B) = 2.
2) A = {Δ, Δ}, B = {Ο, Ο} A B = {Δ, Δ, Ο, Ο} і А В = , отже, n (A B) = n (A) + n (B) = 2 + 2 = 4, де n (A) = 2, n (B) = 2.
Дія, за допомогою якої знаходять суму, називається додаванням. Числа, які додаються, називаються доданками.
У початковому курсі математики додавання цілих невід’ємних чисел вводиться на основі виконання практичних вправ, пов’язаних з об’єднанням двох множин предметів (без використання відповідної символіки та термінології). Основним засобом розкриття теоретико-множинного смислу додавання є розв’язування простих текстових задач.
Існування суми, її єдиність
Теорема: «Сума цілих невід’ємних чисел завжди існує і вона єдина».
(Доведення теореми випливає з теореми про існування і єдиність операції об'єднання множин).
Іншими словами, які б не було взято два цілих невід’ємних числа а і b, завжди можна знайти їх суму – ціле невід’ємне число с, яке і буде єдиним для заданих чисел а і b.
Сума декількох доданків
Нехай сума двох доданків визначена і визначена сума п доданків. Тоді сума, що складається з n+1 доданка, тобто сума а1 + а2 + ... + ап + ап+1 дорівнює (а1 + а2 + ... + ап) + ап+1, тому
а1 + а2 + ... + ап + ап+1 = (а1 + а2 + ... + ап) + ап+1.
Приклад:
.
Закони додавання
Комутативний (переставний) закон: «Для будь-яких цілих невід’ємних чисел а і b виконується рівність: а + b = b + а.»
Доведення. Нехай а – кількість елементів множини A, b – кількість елементів множини B, тобто n(A) = а, n(B) = b і А В = . Тоді за означенням суми цілих невід’ємних чисел а + b = n (A B). А так як A B = B A (за комутативним законом об’єднання множин), то n (A B) = n (B A) за означенням суми n (B A) = b + а а+b = b+а для будь-яких цілих невід’ємних чисел.
Асоціативний (сполучний) закон: «Для будь-яких цілих невід’ємних чисел а , b, с виконується рівність: (a + b) + с = а + (b + с)».
Доведення. Нехай а – кількість елементів множини A, b – кількість елементів множини B, с – кількість елементів множини С, тобто n (A) = а, n (B) = в, n (С) = с, А В = , B С = . Тоді за означенням суми двох цілих невід’ємних чисел (а + b) + с = n (A B) + n (C) = n ((A B) C). Так як за асоціативним законом об’єднання множин (A B) С = =A (B C), то n ((A B) С) = n (A (B C)) за означенням суми двох чисел n (A (B C)) = n (A) + n (B C) = а + (b + с) (а + b) + + с = а + (b + с).
Властивість монотонності додавання: «Для будь-яких цілих невід’ємних чисел а , b, m таких, що а = b виконується рівність:
».
Наслідки із комутативного та асоціативного законів додавання:
Додавання числа до суми і суми до числа.
1) (а + b) + с = (а + с) + b = а + (b + с);
2) а + (b + с) = (а + b) + с=:(а + с) + b.
Додати число до суми або суму до числа можна двома способами: обчислити суму і до результату додати дане число або додати це число до одного з доданків, а до результату додати другий доданок.
Додавання суми до суми.
(а + b) + (с + d) = (а + с) + (b + d) = (а + d) + (b + с).
Для того щоб додати суму до суми, можна до одного з доданків першої суми додати один із доданків другої, а до другого доданку першої суми – інший доданок другої суми і одержані результати додати.
Ці правила легко поширити на будь-яку кількість доданків і об’єднати їх одним правилом: якщо при додаванні маємо дужки, то їх можна опустити і об’єднати між собою доданки в будь-якій послідовності так, щоб обчислення виконувати найзручнішим способом.
Із законами дії додавання учні початкових класів знайомляться поступово: спочатку вивчають переставну властивість додавання (1 клас), яка використовується при складанні таблиць додавання одноцифрових чисел, а далі для розкриття прийомів додавання та раціоналізації обчислень. В 4 класі при узагальненні і систематизації знань про дію додавання закони – переставний і сполучний формулюються та записуються у буквеному вигляді.