Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
obrabotka.doc
Скачиваний:
9
Добавлен:
16.11.2019
Размер:
971.26 Кб
Скачать

§ 3. Случайные погрешности

Случайные величины, к которым относятся случайные погрешности, изучаются в теории вероятностей и в математической статистике. Мы здесь опишем – с пояснениями, но без доказательств – основные свойства и основные правила обращения с такими величинами в том объеме, который необходим для обработки результатов измерений, полученных в лаборатории. В этом параграфе мы будем предполагать, что систематические погрешности пренебрежимо малы и все ошибки сводятся к случайным. Позднее, в § 5, мы обсудим, как следует поступать в тех случаях, когда нужно принимать во внимание как случайные, так и систематические погрешности опыта.

Рассмотрим для примера данные, полученные при измерении массы тела на весах, у которых имеется область застоя из-за трения призмы на подушке (разброс результатов для наглядности преувеличен). Пусть масса тела близка к 48 мг, результат измерений удается отсчитать по шкале с точностью до 0,1 мг. Имеем:

№ опыта

1

2

3

4

5

6

7

8

9

10

11

Масса, мг

48,0

47,9

47,5

48,2

48,4

47,8

48,6

48,3

47,8

48,1

48,2

Вместо одного нужного нам результата мы получили одиннадцать. Что делать с полученными цифрами? Как найти из них достаточно близкое к истинному значение массы тела и как оценить погрешность полученного результата? Этот вопрос подробно изучается в математической статистике. Мы здесь изложим соответствующие правила без вывода.

В качестве наилучшего значения для измеренной величины обычно принимают среднее арифметическое из всех полученных результатов:

. (3)

В нашем случае получим

mср = (48,0 + 47,9 + ... + 48,1 + 48,2) = 48,1 мг.

Этому результату следует приписать погрешность, определяемую формулой

(4)

В нашем случае

мг.

Результат опыта записывается в виде

х = xср ± σx. (5)

В нашем случае m = (48,10± 0,10)мг.

Рассмотрим формулы (3) и (4). Прежде всего, попытаемся понять, как зависит результат расчета от числа измерений. Формула (3) показывает, что xср от числа измерений зависит слабо. Все слагаемые, входящие в числитель, приблизительно равны друг другу. Их сумма пропорциональна числу слагаемых. После деления на знаменатель получается величина, мало зависящая от числа измерений. Так, конечно, и должно быть. Среднее измеренное значение – при правильной методике опыта – всегда лежит вблизи истинного значения и в разных независимых сериях измерений испытывает вокруг него небольшие случайные колебания.

Погрешность опыта, определяемая формулой (4), с увеличением числа измерений п уменьшается как :

. (6)

(Число членов суммы в (4) растет как п, числитель (4) поэтому увеличивается как , а все выражение уменьшается как .) Этот результат является очень важным. По мере увеличения числа опытов ошибки в сторону преувеличения и преуменьшения результата все лучше компенсируют друг друга, и среднее значение приближается к истинному. В нашем примере одиночные отсчеты отличаются от среднего на несколько десятых, а погрешность результата, полученного при усреднении всех измерений,, составляет всего одну десятую.

Формула (4) может быть записана в несколько ином виде

.

При такой записи множитель 1/ , определяющий улучшение результата с увеличением числа измерений, вынесен из-под общего корня, а под корнем осталось среднее значение квадрата отклонений, вычисленное по всем произведенным измерениям. Этот корень определяет σотд – среднюю (точнее говоря – среднеквадратичную) погрешность отдельного измерения:

.

При обсуждении смысла величины σ следует помнить, что истинную величину погрешности невозможно узнать до тех пор, пока из каких-либо других опытов (или соображений) не удастся определить искомую величину с существенно лучшей точностью. Но тогда рассматриваемые опыты потеряют значение, и их погрешность никого не будет интересовать. Как уже отмечалось, погрешность результата не столько определяют, сколько оценивают. Оценка (4) подобрана так, что при проведении многочисленных серий измерений погрешность в 2/3 случаев оказывается меньше σx, а в 1/3 случаев больше, чем σx.

Иначе говоря, если бы мы – в нашем случае – провели не одну серию из 11 взвешиваний, а десять таких серий, то мы могли бы ожидать, что в шести или семи из них усредненный результат будет отличаться от истинной массы тела меньше чем. на 0,1 мг. а в остальных случаях больше, чем, на 0,1 мг.

Погрешность, определенную с достоверностью 2/3, обычно называют стандартной (или среднеквадратичной) погрешностью опытов, а ее квадрат – дисперсией. Можно показать, что, как правило, погрешность опыта только в 5% случаев превосходит ±2σ и почти всегда оказывается меньше ±3σ.

На первый взгляд из сказанного можно сделать вывод, что, беспредельно увеличивая число измерений, можно даже с самой примитивной аппаратурой получить очень хорошие результаты. Это, конечно, не так. С увеличением числа измерений уменьшается только случайная погрешность опытов. Методические погрешности и погрешности, связанные с несовершенством приборов (например, с неправильностью их шкалы), при увеличении числа опытов не меняются. В приведенном выше примере результат взвешивания округлялся до десятых долей миллиграмма. Это-делалось потому, что сотых долей отсчитать было нельзя. Одна только ошибка отсчета составляет при этом около 0,1 мг. Поэтому погрешность результата ни при каком числе опытов не может быть сделана меньше. Число опытов в нашем случае было-выбрано разумно. Из приведенных в таблице цифр ясно, что при однократном измерении мы могли ошибиться на несколько десятых. Среди цифр встречаются результаты, отличающиеся на 0,3 и даже на 0,5 от среднего. После усреднения по 11 измерениям погрешность существенно уменьшилась. Но если окажется нужным узнать массу тела с лучшей, чем это мы сделали, точностью, то недостаточно просто увеличить число измерений. Придется взять более точные весы, позволяющие производить измерения не до десятых, а, скажем, до сотых долей миллиграмма.

Скажем несколько слов о формуле (4). Эта формула позволяет хорошо оценивать величину стандартной погрешности в тех случаях, когда число опытов оказывается не меньше 4–5. При меньшем числе опытов лучше применять другие, более сложные оценки. Их мы, однако, рассматривать не будем, во-первых, чтобы не удлинять и не усложнять текста, а, во-вторых, по той причине, что надежность всех этих оценок при малом числе измерений оказывается невысокой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]