Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Полный текст мет ИМ.doc
Скачиваний:
16
Добавлен:
15.11.2019
Размер:
1.54 Mб
Скачать

1. Метод Монте-Карло (мк).

ИМ можно считать развитием метода МК, разработанного в 50-х годах прошлого века. Основная идея этого метода состоит в использовании выборок для получения оценок искомых характеристик изучаемых объектов. Задача, при этом, формулируется таким образом, чтобы алгоритм решения использовал случайные числа соответствующих законов распределения. Достаточно сложно представить себе, как формализовать полностью детерминированную задачу (вычисление определенных интегралов, например) для решения ее с помощью выборок. (Существенное значение при этом имеют методы получения последовательностей случайных чисел). Этот вопрос детально рассматривается в следующей главе.

Соответствующие построения детально рассмотрены ниже.

Пример 1.1 Определение площади круга радиуса r=0.5 с центром в точке (0.5;0.5). Будем формировать пары псевдослучайных чисел и рассматривать их как координаты точек брошенных внутрь квадрата со стороной равной единице. Часть этих точек попадет внутрь вписанного круга, а часть нет. Исходя из понятия геометрической вероятности, можно сделать вывод − отношение вероятности попаданий в круг к полному числу точек равно отношению площади круга к площади квадрата (равного единице). Поэтому за оценку площади круга можно принять величину .

В качестве иллюстрации построим график (точки − реализации ).

Пример 1.2 Вычисление определенного интеграла. Пусть требуется найти интеграл от функции на отрезке [0,1]. Применяя тот же прием, что и в предыдущем примере получим

Другим способом вычисления является метод суммирования значений подынтегральной функции при случайных значениях аргумента и нахождением среднего

Второй способ при одном и том же количестве точек и, следовательно, меньшим количеством арифметических действий, дает лучшие результаты.

Пример 1.3 Приближенное решение задачи линейного программирования.

Метод аналогичен способу вычисления определенного интеграла. В прямоугольник, содержащий многогранник планов бросаются случайные точки (случайные планы задачи), вычисляется значения функции цели на этих планах. Размер прямоугольника определяет интервалы, на которых формируются последовательности случайных чисел. Точки, не попавшие в многоугольник решений, игнорируются. Сравнивая полученные значения функции цели на различных планах, выбирают наибольшее (наименьшее) из них и принимают соответствующий план как оптимальный. При этом координата x запоминается как элемент , координата y , а функция цели .

Дана задача линейного программирования

Решение задачи легко получить обычными методами, тогда

. Приведем схему решения ММК.

Таким образом, .

Сравнивая результаты, видим, что ошибка составляет порядка одного процента. Увеличить точность можно, проводя значительное число прогонов и усредняя результат. Достоинством метода является простота перехода к задачам более высоких размерностей.

Пример 1.4 Пусть теперь задача имеет вероятностный характер. Легко убедиться, что схема решения остается такой же, как и для чисто детерминированных задач.

Пусть проводится n независимых опытов, в каждом из которых событие А появляется с равной вероятностью р. Требуется найти вероятность появления события ровно k раз. Это задача Бернулли и ответ можно получить по формуле

При n=20, k=5, и p=0.2 0.1748. Построим моделирующую программу

Пример 1.5 При одном обзоре радиолокационная станция, следящая за космическим объектом, обнаруживает его с вероятностью р. Обнаружение объекта в каждом цикле происходит независимо от других. Найти вероятность того, что при n циклах объект будет обнаружен.

Путь р=0.05, n=15, тогда искомая вероятность .

Моделирующая программа

дает результат .

Пример 1.6 В урне находится 5 белых и 20 черных шаров. Из урны последовательно (без возвращения) вынимают шары до появления белого. Найти вероятность того, что белый шар появится третьим. Решение задачи дает . Численный результат ИМ получим по программе

и P(A)= 0.1391 при длине прогона n =10000.

Во всех приведенных примерах погрешность ИМ имеет порядок первых процентов. Уточнение расчетов, за счет большого количества прогонов и других методов понижения дисперсии позволяет без существенных затрат машинного времени снизить погрешность до сотых процента. Рассмотрение приведенных здесь программ показывает однотипность подхода ИМ для самых различных классов задач и это является несомненным достоинством метода.