
- •Теория механизмов и машин
- •Введение
- •1. Структурный анализ плоских механизмов.
- •1.1. Цель и задачи структурного анализа.
- •1.2. Число степеней свободы плоского механизма.
- •1.3. Определение структурной формулы механизма.
- •1.4. Наиболее распространенные при структурном анализе ошибки.
- •2. Структурный синтез механизмов
- •2.1. Основные понятия синтеза механизмов
- •2.2. Задачи синтеза
- •2.3. Основные условия синтеза
- •2.4.Ограничения
- •2.4.1. Условия существования кривошипа
- •2.4.2. Ограничение углов давления в рычажных механизмах
- •2.4.3. Коэффициент изменения средней скорости ведомого звена
- •2.5. Задачи синтеза рычажных механизмов
- •2.6. Синтез кривошипно-коромысловых механизмов
- •2.6.1. Синтез шарнирного четырехзвенника по трем положениям входного и выходного звеньев
- •2.6.2. Синтез шарнирного четырехзвенника по заданному коэффициенту изменения скорости
- •2.6.3. Синтез кривошипно-коромыслового механизма по известному углу размаха коромысла и длине стойки
- •2.7. Синтез кривошипно-ползунных механизмов
- •2.7.1. Синтез кривошипно-ползунного механизма по коэффициенту изменения средней скорости и ходу ползуна
- •2.7.2. Синтез кривошипно-ползунного механизма по заданному ходу ползуна и максимальным углам давления рабочего и холостого ходов
- •2.8. Синтез кулисных механизмов
- •2.8.1. Синтез кулисного механизма по заданному коэффициенту
- •2.8.2.Синтез механизма с вращающейся кулисой
- •3.Кинематический анализ плоских механизмов аналитическим методом.
- •3.1 Определение положений звеньев методом векторного замкнутого контура.
- •3.2 Определение скоростей и ускорений в плоских рычажных механиз- мах аналитическим методом.
- •3.2 Графоаналитический метод (метод планов)
- •3.2.1 Порядок кинематического анализа
- •3.2.2 Построение планов положений механизма
- •3.3 Построение планов скоростей и ускорений плоских механизмов II класса
- •2.4 Построение планов скоростей и ускорений кулисных механизмов
- •Пример 3.3
- •4. Динамический анализ рычажного механизма
- •4.1 Классификация сил, действующих на звенья механизмов
- •4.2 Определение инерционной нагрузки звеньев
- •1.3 Условие статической определимости плоских механизмов с низшими парами
- •1.4 Последовательность определения реакций в кинематических парах
- •1.5 Силовой анализ структурных групп второго класса (диад)
- •4.6 Силовой анализ входного звена
- •4.7 Определение уравновешивающей силы по методу Жуковского
- •4.8 Потери мощности на трение
- •4.9 Методические указания к выполнению раздела курсового проекта по тмм. Динамический анализ рычажного механизма
- •4.9.1 Исходные данные
- •4.9.2 Задачи динамического анализа
- •4.9.3 Объем задания
- •4.9.4 Вопросы для самопроверки
- •5.Анализ и синтез кулачкового механизма.
- •5.1.Объем и содержание задания:
- •5.2.Общие сведения.
- •5.3Построение графиков.
- •5.4.Определение масштабных коэффициентов графиков.
- •2. Масштабный коэффициент времени определяется по формуле:
- •4. Масштабный коэффициент ускорения толкателя или колебателя.
- •5.5.Определение минимального радиуса кулачка.
- •5.6.Построение профиля кулачка
- •Решение:
- •2. Определение масштабных коэффициентов графиков.
- •Определение минимального радиуса кулачка
- •Построение профиля кулачка
- •1. Закон движения толкателя задан графиком ψ-t (рис.3)
- •Решение:
- •1. Построение графиков приведено в случае 1.
- •2. Определение масштабных коэффициентов:
- •4. Построение профиля кулачка.
- •6.Требования к оформлению и защите курсового проекта по тмм.
- •6.1 Общие положения
- •6.1.1 Цель и задачи курсового проектирования
- •6.1.2 Задание на проектирование
- •6.1.3 Содержание проекта
- •6.1.4 Оформление проекта
- •6.1.4.1 Графическая часть
- •6.1.4.2 Расчетно-пояснительная записка
- •6.2. Защита курсового проекта
- •6.3 Порядок выполнения разделов проекта
- •6.3.1 Динамический синтез рычажного механизма по коэффициенту неравномерности движения
- •6.3.1.1 Порядок выполнения работы
- •6.3..1.2 Графическая часть (лист I)
- •6.3..1.3 Пояснительная записка к листу I
- •6.3.2 Динамический анализ рычажного механизма
- •6.3..2.1 Порядок выполнения работы
- •6.3.2.2 Графическая часть (лист 2)
- •6.3.2.3 Пояснительная записка к листу 2
- •6.3.3 Проектирование и кинематическое исследование зубчатой передачи и планетарного механизма
- •6.3.3.1 Порядок выполнения работы
- •6.3.3.2 Графическая часть (лист 3)
- •6.3.3.3 Пояснительная записка к листу 3
- •6.3.4 Синтез кулачкового механизма
- •6.3.4.1 Порядок выполнения работы
- •6.3.4.2 Графическая часть (лист 4)
- •6.3.4.3 Пояснительная записка к листу 4
- •5 Кинематический график (закон движения толкателя в кулачковом) механизме)
- •Пример выполнения курсового пректа по тм
- •Введение
- •1 Динамический синтез рычажного механизма по коэффициенту неравномерности хода машины
- •1.1 Цели и задачи
- •1.2 Структурный анализ рычажного механизма
- •1.3 Выбор масштабных коэффициентов. Описание построения планов положения механизма. Построение диаграммы внешних сил
- •1.4 Двенадцать повернутых на 900 планов скоростей
- •1.5 Динамическая модель рычажного механизма
- •1.6 Определение приведенной силы сопротивления и момента приведенной силы сопротивления
- •1.7 Расчет кинетической энергии и приведенного момента инерции
- •1.8 Построение графиков и кривой Виттэнбауэра
- •1.9 Определение избыточной работы и момента инерции маховика
- •1.10 Определение положения максимальной нагрузки и расчет углового ускорения
- •2 Динамический анализ рычажного механизма
- •2.1 Постановка задач
- •2.2 Построение плана скоростей и ускорений рычажного механизма
- •2.3 Определение инерционной нагрузки звеньев
- •2.4 Силовой анализ методом планов сил
- •2.5 Силовой анализ методом Жуковского
- •2.6 Потери мощности на трение в кинематических парах
- •2.7 Мощность двигателя
- •3. Синтез и анализ зубчатых механизмов
- •3.1 Постановка задачи
- •3.2 Расчет параметров эвольвентного зубчатого зацепления
- •3.3 Построение картины эвольвентного зацепления
- •3.4 Коэффициент торцового перекрытия
- •3.5 Определение передаточного отношения, и подбор чисел зубьев
- •3.6 Построение схемы редуктора и планов скоростей
- •3.7 Построение плана. Аналитический и графический расчет частот вращения
- •4 Синтез и анализ кулачкового механизма
- •4.1 Цели и задачи
- •4.2 Графическое исследование заданного закона движения
- •4.3 Определение масштабных коэффициентов
- •180* Хmax
- •4.4 Определение минимального радиуса кулачка
- •4.5 Построение профиля кулачка и определение радиуса ролика
- •4.6 Диаграмма изменения угла давления. Максимальные скорость и ускорение
- •Контрольные задания с примерами выполнения для студентов заочного курса обучения
- •Пример выполнения задачи 1
- •Пример выполнения задачи 2
- •Решение
- •1. Определим недостающие размеры:
- •2. Строим схему механизма в масштабе
- •3. Определение скоростей точек механизма
- •4. Определение ускорений точек механизма
- •Задача 3.
- •Пример выполнения задачи 3
- •Задача 4 Вариант 0
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Пример выполнения задачи 4
- •Литература
- •Теория механизмов имашин Учебное пособие к выполнению курсового проекта и контрольной работы по дисциплине «Теория механизмов и машин » для студентов механических специальностей
- •12027 Г. Могилев, пр. Шмидта, 3
1.4. Наиболее распространенные при структурном анализе ошибки.
Неправильно определяют число подвижных звеньев механизма, принимая за отдельные звенья тела, жестко соединенные между собой. Например, звено 1 на рисунке 1.15 ошибочно считают за два звена.
Неправильно определяют число кинематических пар, не учитывая пары, соединяющие звенья со стойкой, или принимая за одну пару соединение в одном узле (точке) трех звеньев. Например, С и Д (рис.1.12) соединяются по три звена. Следовательно, в каждой точке будет по две пары.
Неправильно отсоединяют механизмы I класса, не учитывая, что число их должно быть равно степени свободы механизма и, что в механизмы I класса нужно включать входные звенья.
При вычерчивании заменяющей схемы механизма часто нарушается последовательность подсоединения звеньев друг к другу, неправильно проводится замена высшей кинематической пары добавочным звеном и кинематическими парами V класса».
При делении механизма на структурные группы одно и тоже звено включают в две, а то и в три структурные группы одновременно.
Отсоединяют в структурные группы нечетное число звеньев.
2. Структурный синтез механизмов
Основной задачей синтеза механизма является проектирование механизма с заданным движением выходного звена, связанного с рабочим органом механизма. Эта задача имеет множество решений, так как один и тот же вид движения выходного звена можно осуществить различными механизмами. Конструктор должен выбрать наиболее оптимальный для заданных условий вариант, учитывающий назначение и условия работы механизма.
Начальной стадией проектирования является структурный синтез, в задачу которого входит проектирование по заданным условиям структурной схемы механизма. В структурной схеме указываются все звенья, стойка, виды кинематических пар и их взаимное расположение. Структурный синтез представляет собой проектирование схемы механизма без определения размеров звеньев. В его основе лежит учение о кинематических парах, степенях свободы механизмов и их образования путем наслоения структурных групп (групп Ассура).
При структурном синтезе степень свободы механизма дается в задании или принимается конструктором. В механизме с одной степенью свободы должно быть одно входное звено, образующее со стойкой кинематическую пару пятого класса (поступательную или вращательную). В механизмах с W=2 могут быть либо два звена, связанных с источником питания, образующих со стойкой одноподвижные ( пятого класса) кинематические пары, либо одно звено, образующее со стойкой двухподвижную (четвертого класса) пару.
Более сложный механизм с числом звеньев I образуют путем наслоения к механизму I класса структурных групп, которые не меняют степень свободы механизма, т.е. их W =0 (рис. 1.9). Механизм с заданным числом степеней свободы может быть выполнен по различным структурным схемам, но должен обеспечить требуемое движение выходного звена при заданном движении входного.
При структурном синтезе стремятся получить механизм, удовлетворяющий заданным условиям, но с меньшим числом звеньев и кинематических пар. Если механизм предназначен для передачи больших усилий, то следует применять низшее кинематические пары, если проектируется механизм, к которому предъявляется требование большой точности движения, то предпочтение нужно отдать высшим парам.
Структурный синтез в курсовом проекте по ТММ не решается, так как структурные схемы проектируемых механизмов приведены в задании, поэтому предлагается произвести только структурный анализ указанных, схем.