- •Теория вероятностей
- •§ 1. Предмет теории вероятностей
- •§ 2. Случайные события или исходы. Множество элементарных событий. Основные понятия
- •Примеры на построение множества ω.
- •Алгебраические операции над событиями
- •Диаграмма Венна.
- •Свойства операций
- •§ 3. Различные подходы к определению вероятности
- •П. 1. Аксиоматическое определение вероятности
- •П. 2. Классическое определение вероятности
- •Решение.
- •Решение.
- •Пп. 1. Комбинаторный метод вычисления вероятностей в классической схеме
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Пп. 2. Геометрические вероятности в классической схеме
- •Решение.
- •П. 3. Статистическое определение вероятности
- •§ 4. Основные теоремы теории вероятностей п.1. Теоремы сложения вероятностей
- •Доказательство.
- •Доказательство (методом математической индукции).
- •Доказательство.
- •Доказательство.
- •Решение.
- •Д оказательство (геометрическое)
- •П.2. Теоремы умножения вероятностей
- •Доказательство.
- •Решение.
- •Решение.
- •§ 5. Формулы полной вероятности и формула Байеса п. 1. Формула полной вероятности (следствие обеих основных теорем сложения и умножения)
- •Решение.
- •П. 2. Формула Байеса (Бейеса) (следствие теоремы умножения и формулы полной вероятности)
- •Решение.
- •§ 6. Последовательность независимых испытаний п. 1. Независимые испытания
- •П. 2. Формулы Бернулли.
- •Решение.
- •Решение.
- •Замечания.
- •Решение.
- •П. 3. Предельные теоремы в схеме Бернулли
- •Решение.
- •Решение.
- •Доказательство.
- •Решение.
- •П. 4. Наивероятнейшее число появления события в независимых испытаниях
- •Решение.
- •§ 7. Случайные величины п. 1. Основные определения
- •П. 2. Законы распределения случайных величин. Законы распределения дискретных случайных величин. Функция распределения
- •Формы закона распределения дсв.
- •Решение.
- •Решение.
- •3. Функция распределения – универсальный закон распределения (для дсв и нсв).
- •Свойства f(X).
- •Доказательство.
- •Графики функции распределения.
- •Решение.
- •Решение.
- •П. 3. Плотность распределения вероятностей нсв
- •Свойства плотности распределения
- •2. Условие нормировки: интеграл в бесконечных пределах от плотности распределения равен 1: . (4) Доказательство
- •Решение.
- •Решение.
- •П. 4. Числовые характеристики случайных величин, их роль и назначение
- •Пп 1. Характеристики положения (математическое ожидание, мода, медиана)
- •1. Математическое ожидание или среднее значение случайной величины
- •2. Мода случайной величины
- •3. Медиана случайной величины
- •Пп 2. Моменты
- •Доказательство.
- •И эксцесс
- •Решение.
- •Решение.
- •Решение.
- •П. 5. Законы распределения вероятностей дискретных случайных величин: биномиальный, Пуассона, гипергеометрический. Пп 1. Биномиальное распределение
- •Решение.
- •Пп 2. Распределение Пуассона
- •Решение.
- •Решение.
- •Пп 3. Гипергеометрическое распределение
- •Решение.
- •П. 6. Законы распределения вероятностей непрерывных случайных величин: равномерный, показательный, нормальный Пп 1. Равномерное распределение или закон равномерной плотности
- •Решение.
- •Пп 2. Показательное или экспоненциальное распределение
- •Решение.
- •Пп 3. Нормальный закон распределения
- •Смысл параметров m и σ
- •Решение.
- •§ 8. Системы случайных величин или случайные векторы п. 1. Основные понятия.
- •П. 2. Законы распределения свдт и свнт
- •Закон. Таблица распределения – закон распределения свдт.
- •Решение.
- •Решение.
- •Закон. Функция распределения – закон распределения свдт и свнт.
- •Решение.
- •3. Плотность распределения (для свнт)
- •Решение.
- •Решение.
- •П. 4. Плотности распределения отдельных величин, входящих в систему. Равномерное и нормальное распределения. Условные законы распределения
- •Решение.
- •Решение.
- •П. 5. Числовые характеристики системы. Корреляция. Линии регрессии
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •§ 9. Закон больших чисел. Предельные теоремы теории вероятностей
Доказательство.
Действительно, для ДСВ в сумме
при симметричном относительно mX
законе распределения и нечетном s
каждому положительному слагаемому
соответствует равное ему по абсолютной
величине отрицательное слагаемое так,
что вся сумма равна 0. Аналогично. Для
НСВ
как интеграл в симметричных пределах
от нечетной функции.
(что и требовалось доказать).
В связи с этим, в качестве характеристики асимметрии и выбирают простейший нечетный момент – третий . Он имеет размерность куба СВ, для получения безразмерной характеристики рассматривают отношение к среднему квадратическому в третьей степени:
Определение 48. Коэффициентом
асимметрии Sk
случайной величины Х называется
величина
.
(12)
.
связь между начальными и центральным
моментом 3-го порядка.
И эксцесс
Четвертый центральный момент служит для характеристики «крутости», т. е. островершинности или плосковершинности распределения.
Это свойство описывается с помощью эксцесса.
Определение 49. Эксцессом
случайной величины Х называется величина
.
(13)
Число 3 вычитается из соотношения
потому, что для наиболее распространенного
нормального закона распределения НСВ
(с которым познакомимся позднее)
.
Кривая нормального распределения, для которого эксцесс равен нулю, принята как бы за эталон, с которым сравниваются другие распределения. Кривые более островершинные имеют положительный эксцесс, более плосковершинные – отрицательный.
Абсолютные моменты
– начальный абсолютный момент.
– центральный абсолютный момент.
Абсолютные моменты четных порядков совпадают с обычными моментами. Из абсолютных моментов нечетного порядка чаще всего применяется первый абсолютный центральный момент:
– среднее арифметическое отклонение.
а) Для дискретных случайных
величин:
,
(14)
b) Для
непрерывных случайных величин:
(15)
применяется как характеристика
рассеивания (как и DX
и
).
Замечания.
1. Моменты могут рассматриваться
не только относительно начала координат
(начальные) или математического ожидания
(центральные), но и относительно
произвольной точки а:
.
2. Во многих задачах полная характеристика случайной величины (закон распределения) не нужна или не может быть получена, поэтому ограничиваются приблизительным описанием СВ с помощью числовых характеристик, каждая из которых выражает какое-либо характерное свойство распределения. Иногда характеристиками пользуются для приближенной замены одного распределения другим.
Пример 1. Дан ряд распределения ДСВ:
xi |
–1 |
0 |
1 |
pi |
0,4 |
0,2 |
a |
Найти: 1) величину а, 2) математическое
ожидание и дисперсию
и D[X]
, 3)
,
.
