Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ-передел-3.doc
Скачиваний:
9
Добавлен:
10.11.2019
Размер:
4.4 Mб
Скачать

1.14 Text The radical years: general relativity and quantum mechanics

1.14.1 Read the text, translate it and name the main steps of the mechanics development in the first half of the 20th century.

The gradual acceptance of Einstein’s theories of relativity and the quantized nature of light transmission, and of Niels Bohr’s model of the atom created as many problems as they solved, leading to a full-scale effort to reestablish physics on new fundamental principles. Expanding relativity to cases of accelerating reference frames (the “general theory of relativity”) in the 1910s, Einstein posited an equivalence between the inertial force of acceleration and the force of gravity, leading to the conclusion that space is curved and finite in size, and the prediction of such phenomena as gravitational lensing and the distortion of time in gravitational fields.

Figure 11 - Niels Bohr (1885-1962)

The quantized theory of the atom gave way to a full-scale quantum mechanics in the 1920s. The quantum theory (which previously relied in the “correspondence” at large scales between the quantized world of the atom and the continuities of the “classical” world) was accepted when the Compton Effect established that light carries momentum and can scatter off particles, and when Louis de Broglie asserted that matter can be seen as behaving as a wave in much the same way as electromagnetic waves behave like particles (wave-particle duality). New principles of a “quantum” rather than a “classical” mechanics, formulated in matrix form by Werner Heisenberg, Max Born, and Pascual Jordan in 1925, were based on the probabilistic relationship between discrete “states” and denied the possibility of causality. Erwin Schrödinger established an equivalent theory based on waves in 1926; but Heisenberg’s 1927 “uncertainty principle” (indicating the impossibility of precisely and simultaneously measuring position and momentum) and the “Copenhagen interpretation” of quantum mechanics (named after Bohr’s home city) continued to deny the possibility of fundamental causality, though opponents such as Einstein would assert that “God does not play dice with the universe”. Also in the 1920s, Satyendra Nath Bose’s work on photons and quantum mechanics provided the foundation for Bose-Einstein statistics, the theory of the Bose-Einstein condensate, and the discovery of the boson.

1.15 Revision texts 1.13 - 1.1

1.15.1 Match words and word-combinations with their translation:

unstable configuration

наблюдатель, эксперт

radioactivity

угол

quantum theory

фотоэлектронная эмиссия (эффект активно-электрический)

assertion

гравитационная фокусировка

interchangeable quantities

избыточный, излишний

to scatter off particles

распад, разложение

to measure

ядерное деление

theory of relativity

искажение времени

matrix form

двойственность, дуализм

angle

явления

gravitational lensing

радиоактивность

to deny

измерять, мерить

photoelectric effect

излучение черного тела

superfluous

утверждение

boson

теория относительности

hydrogen gas

неустойчивая (нестабильная) конфигурация

to emerge

причинная связь, обусловленность

inertial force

отрицать, отвергать

nuclear fission

рассеивать частицы

distortion of time

сжатый электрон

decay

квантовая теория

light transmission

испускать излучение

phenomena

матричная форма (уравнения)

observer

взаимозаменяемые (взаимозаместимые) величины

duality

возникать, появляться

compressed electron

икс-лучи, рентгеновские лучи

x-rays

бозон, бозе-частица

blackbody radiation

газ водорода

causality

передача (пропускание) света

emit radiation

инерционная сила, сила инерции

1.15.2 Find the sentences with these words and word-combinations in texts 1.13 - 1.14 and translate them.

1.15.3 Prepare the words and word-combinations for a dictation.