Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Seminarskie_zanyatia_po_fizike.doc
Скачиваний:
16
Добавлен:
08.11.2019
Размер:
2.65 Mб
Скачать

5. Физика слуха: звукопроводящая и звукопринимающая части слухового аппарата. Теории Гельмгольца и Бекеши.

Физика слуха связана с функциями наружного (1,2 рис.4), среднего (3, 4, 5, 6 рис.4) и внутреннего уха (7-13 рис. 4).

Рис. 4.

Схематическое представление основных элементов слухового аппарата человека: 1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4, 5, 6 – система косточек, 7 – овальное окно (внутреннего уха), 8 – вестибулярная лестница, 9 – круглое окно, 10 – барабанная лестница, 11 – геликотрема, 12 - улитковый канал, 13 - основная (базилярная) мембрана.

По выполняемым функциям в слуховом аппарате человека можно выделить звукопроводящую и звукопринимающую части, основные элементы которых представлены на рис.5.

Рис.5.

1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4– система косточек, 5 – улитка , 6 – основная (базилярная мембрана, 7 – рецепторы, 8 – разветвление слухового нерва.

Основная мембрана весьма интересная структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который представлял основную мембрану аналогично ряду построенных струн пианино. По Гельмгольцу, каждый участок базилярной мембраны резонировал на определенную частоту. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонансной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна (7 рис.4) распространяется волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространяется приблизительно на 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм.

Согласно современным представлениям восприятие высоты тона определяется положением максимума колебаний основной мембраны. Эти колебания, воздействуя на рецепторные клетки кортиева органа, вызывают возникновение потенциала действия, который по слуховым нервам передается в кору головного мозга. Головной мозг окончательно обрабатывает поступающие сигналы.

6. Звуковые методы исследования.

Звук может быть источником информации о состоянии органов человека.

А. Аускультация – непосредственное выслушивание звуков, возникающих внутри организма.

Б. Перкуссия – исследование внутренних органов посредством постукивания по поверхности тела и анализа возникающих при этом звуков. Постукивание осуществляется либо с помощью специальных молоточков, либо при помощи пальцев.

В. Фонокардиография – графическая регистрация тонов и шумов сердца и их диагностическая интерпретация.

7. Ультразвук. Излучатели и приемники уз.

Ультразвук (УЗ) – механические колебания и волны с частотами от

20 кГц до, примерно, 109-1010 Гц. Для получения ультразвука используют излучатели, в основе работы которых лежат: обратный пьезоэлектрический эффект, магнитострикция и электрострикция.

Обратный пьезоэлектрический эффект состоит в том, что пластинка, вырезанная определенным образом из кристалла кварца (или другого анизотропного вещества), под действием электрического поля сжимается или удлиняется (деформируются) в зависимости от направления поля. Колебания пластинки передаются частицам окружающей среды, что и порождает ультразвуковую волну, если электрическое поле изменяется с частотой выше

2 103 Гц.

Явление магнитострикции состоит в том, что ферромагнитные стержни (сталь, железо, никель и их сплавы) изменяют свои линейные размеры (деформируются) под действием магнитного поля, направленного по оси стержня. Поместив такой стержень в переменное магнитное поле (например, внутрь катушки, по которой течет переменный электрический ток), в стержне возникают вынужденные механические колебания, амплитуда которых будет особенно велика при резонансе. Колеблющийся торец стержня создает в окружающей среде ультразвуковые волны, интенсивность которых находится в прямой зависимости от амплитуды колебаний торца.

Некоторые материалы (например, керамики) способны изменять свои размеры в электрическом поле. Это явление получило название электрострикции. Внешне отличается от обратного пьезоэлектрического эффекта тем, что изменение размеров зависит только от напряженности приложенного поля, но не зависит от его знака. К числу подобных материалов относятся титанат бария и титанат-цирконат свинца.

Преобразователи, в которых используются описанные выше явления, называют соответственно пьезоэлектрическими, магнитострикционными и электрострикционными. Последние нашли наибольшее применение в практике. Ультразвук регистрируют приемным преобразователем, действие которого основано либо на прямом пьезоэлектрическом эффекте, либо на явлении, обратном электрострикции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]