- •1. Понятие информации, ее виды.
- •2. Понятие информации и аспекты информации.
- •3. Виды иерархии. Функциональная модель процесса управления.
- •4. Информационная структура системы управления.
- •5. Количественные и качественные характеристики информации.
- •6. Превращение информации в ресурс.
- •7. Определение и основные характеристики информационного общества.
- •8. Этапы перехода к информационному обществу.
- •10. Декомпозиция, абстракция, агрегирование.
- •11. Определение и задачи информационной технологии.
- •12. Технологический процесс. Классификация базовых технологических процессов.
- •13. Этапы эволюции информационных технологий.
- •14. Процесс извлечения информации.
- •15. Процесс транспортирования информации.
- •16. Модель osi. Физический уровень.
- •17. Модель osi. Канальный уровень.
- •24. Функциональные компоненты реализации процесса принятия решений.
- •25. Процесс хранения информации.
- •26. Процесс представления и использования информации.
- •Вопросы по второй части лекций: 1. Базовые информационные технологии.
- •2. Мультимедиа-технологии.
- •3. Геоинформационные технологии. Пример слоев интегрированной гис. Области применения.
- •4. Краткая характеристика геоинформационных систем (рассмотреть 5-6 гис).
- •5. Технологии защиты информации.
- •6. Технологии защиты информации. Структурная, временная, информационная и функциональная избыточности компьютерных ресурсов.
- •7. Технологии защиты информации. Общая схема идентификации и установления подлинности пользователя.
- •8. Технологии защиты информации. Процессы шифрования и дешифрования информации.
- •9. Цели и способы защиты передаваемых данных.
- •10. Case-технологии.
- •11. Идеальное объектно-ориентированное case-средство.
- •12. Телекоммуникационные технологии. Модель доступа к удаленным данным.
- •13. Телекоммуникационные технологии. Модель сервера управления данными.
- •14. Телекоммуникационные технологии. Модель комплексного сервера.
- •15. Телекоммуникационные технологии. Архитектура «клиент – сервер», основанная на Web – технологии.
- •16. Телекоммуникационные технологии. Основные компоненты Интернета.
- •17. Технологии искусственного интеллекта.
- •18. Характеристика сред базы знаний интеллектуальной системы.
- •Вопросы по третьей части лекций: 1. Информационные технологии организационного управления.
- •2. Информационные технологии в промышленности и экономике.
- •3. Информационные технологии в образовании. Методологический аспект
- •4. Информационные технологии в образовании. Экономический аспект.
- •5. Информационные технологии в образовании. Технический аспект.
- •6. Информационные технологии в образовании. Технологический аспект.
- •7. Информационные технологии в образовании. Методический аспект.
- •8. Информационные технологии автоматизированного проектирования.
- •9. Системный подход к построению информационных систем.
- •10. Стадии разработки информационных систем. Модель представления.
- •11. Формирование модели предметной области. Теория классификации, теория измерений, семиотика.
- •12. Оценка качества информационных систем. Дефектогенность, дефектабельность, дефектоскопичность.
- •13. Оценка качества информационных систем. Модель классификации критериев качества информационных систем.
- •14. Программные средства информационных технологий (базовые и прикладные).
- •15. Технические средства информационных технологий.
- •16. Классификация архитектур эвм.
- •18. Методические средства информационных технологий.
16. Модель osi. Физический уровень.
Физический уровень реализует физическое управление и относится к физической цепи, по которой передается информация. На этом уровне модель OSI определяет физические, электрические, функциональные и процедурные характеристики цепей связи, а также требования к сетевым адаптерам и модемам.
17. Модель osi. Канальный уровень.
Канальный уровень. На этом уровне осуществляется управление звеном сети и реализуется пересылка блоков информации по физическому каналу. На данном уровне осуществляются такие процессы управления, как: *определение начала и конца блока, *обнаружение ошибок передачи, *адресация сообщений и др. Канальный уровень определяет правила совместного использования сетевых аппаратных средств компьютерами сети.
18. Модель OSI. Сетевой уровень.
Сетевой уровень. Программные средства данного уровня обеспечивают определение маршрута передачи пакетов в сети. Маршрутизаторы, обеспечивающие поиск оптимального, функционируют на сетевом уровне модели OSI.
19. Модель OSI. Транспортный уровень.
Транспортный уровень. На данном уровне контролируется очередность пакетов сообщений и их принадлежность.
20. Модель OSI. Сеансовый уровень.
Сеансовый уровень. На данном уровне координируются и стандартизируются процессы установления сеанса, управления передачей и приемом пакетов сообщений, завершения сеанса.
21. Модель OSI. Уровень представления.
Управление представлением. Программные средства этого уровня выполняют преобразования данных из внутреннего формата передающего компьютера во внутренний формат компьютера-получателя. Данный уровень включает функции кодирования данных на экранах дисплеев или печати. Так же осуществляется сжатие передаваемых данных и их распаковка.
22. Модель OSI. Прикладной уровень.
Прикладной уровень относится к функциям, которые обеспечивают поддержку пользователю на более высоком прикладном и системном уровнях, например:
• обеспечение доступа к общим сетевым ресурсам;
• общее управление сетью;
• передача электронных сообщений;
• организация конференций.
23. Процесс обработки информации.
Обработка информации состоит в получении одних «информационных объектов» из других «информационных объектов» путем выполнения некоторых алгоритмов и является одной из основных операций, осуществляемых над информацией, и главным средством увеличения ее объема и разнообразия.
Виды обработки информации:
• последовательная обработка, применяемая в традиционной фоннеймановской архитектуре ЭВМ, располагающей одним процессором;
• параллельная обработка, применяемая при наличии нескольких процессоров в ЭВМ;
• конвейерная обработка, связанная с использованием в архитектуре ЭВМ одних и тех же ресурсов для решения разных задач.
Основные процедуры обработки данных:
24. Функциональные компоненты реализации процесса принятия решений.
Реализация всех действий, выполняемых в процессе обработки информации, осуществляется с помощью разнообразных программных средств.
Наиболее распространенной областью применения технологической операции обработки информации является принятие решений.
В зависимости от степени информированности о состоянии управляемого процесса, полноты и точности моделей объекта и системы управления, процесс принятия решения протекает в различных условиях:
1. Принятие решений в условиях определенности. В этой задаче модели объекта и системы управления считаются заданными, а влияние внешней среды — несущественным.
2. Принятие решений в условиях риска. Для принятия решений в условиях риска необходимо учитывать влияние внешней среды, которое не поддается точному прогнозу.
3. Принятие решений в условиях неопределенности. Между выбором стратегии и конечным результатом отсутствует однозначная связь. Неизвестны также значения вероятностей появления конечных результатов.
4. Принятие решений в условиях многокритериальности. Многокритериальность возникает в случае наличия нескольких самостоятельных, не сводимых одна к другой целей.
Для поддержки принятия решений обязательным является наличие следующих компонент:
• обобщающего анализа;
• прогнозирования;
• ситуационного моделирования.
В настоящее время принято выделять два типа информационных систем поддержки принятия решений.
Системы поддержки принятия решений DSS (Decision Support System) осуществляют отбор и анализ данных по различным характеристикам и включают средства:
• доступа к базам данных;
• извлечения данных из разнородных источников;
• моделирования правил и стратегии деловой деятельности;
• деловой графики для представления результатов анализа;
• анализа «если что»;
• искусственного интеллекта на уровне экспертных систем. Системы оперативной аналитической обработки OLAP (OnLine Analysis Processing) для принятия решений используют следующие средства:
• мощную многопроцессорную вычислительную технику в виде специальных OLAP-серверов;
• специальные методы многомерного анализа;
• специальные хранилища данных Data Warehouse.
Реализация процесса принятия решений заключается в построении информационных приложений. Выделим в информационном приложении типовые функциональные компоненты, достаточные для формирования любого приложения на основе БД [2].