Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы второй семестр.docx
Скачиваний:
19
Добавлен:
27.09.2019
Размер:
685.86 Кб
Скачать

1.----------------------------------------------------------------

1. Постоянный электрический ток, сила тока. Плотность тока. Условия, необходимые

для существования электрического тока.

Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока,  S площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A - полная работа сторонних и кулоновских сил,  q - электрический заряд.

Электрическое сопротивление - физическая величина, характеризующая  электрические свойства участка цепи.

где ρ - удельное сопротивление проводника, l - длина участка проводника,  S - площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G - проводимость.

2.--------------------------------------------------------------------

  1. Электродвижущая сила источника тока. Внешний и внутренний участки цепи.

Закон Ома для полной цепи.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна:

, где   — элемент длины контура.

Внутреннее сопротивление источника тока. В электрической цепи, состоящей из источника тока и проводников с электрическим сопротивлением R, электрический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Например, при подключении лампы накаливания к гальванической батарее карманного фонаря электрическим током нагреваются не только спираль лампы и подводящие провода, но и сама батарея. Электрическое сопротивление источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением является электрическое сопротивление провода обмотки генератора. На внутреннем участке электрической цепи выделяется количество теплоты, равное

 , (43.13)

где r — внутреннее сопротивление источника тока.    Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r, равно

. (43.14)

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где - напряжение на участке,  R - сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φφε = U напряжение на заданном участке цепи, - электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где - электрическое сопротивление внешнего участка цепи,  r - электрическое сопротивление внутреннего участка цепи.

 

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

     

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

Смешанное соединение - комбинация  параллельного и последовательного  соединений.

3.------------------------------------------------

  1. Сопротивление проводника. Зависимость сопротивления от температуры.

Сверхпроводимость.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношениюнапряжения на концах проводника к силе тока, протекающего по нему[1]. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивленияСопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление;

U — разность электрических потенциалов на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Сопротивление R однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины и сечения следующим образом:

где ρ — удельное сопротивление вещества проводника, L — длина проводника, а S — площадь сечения. Величина, обратная удельному сопротивлению называется удельной проводимостью. Эта величина связана с температурой формулой Нернст-Эйнштейна:

где

  • T — температура проводника;

  • D — коэффициент диффузии носителей заряда;

  • Z — количество электрических зарядов носителя;

  • e — элементарный электрический заряд;

  • C — Концентрация носителей заряда;

  •  — постоянная Больцмана.

Следовательно, сопротивление проводника связано с температурой следующим соотношением:

Сопротивление также может зависеть от параметров   и  , поскольку сечение и длина проводника также зависят от температуры.

Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевымэлектрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов,сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании. Фазовый переход в сверхпроводящее состояние

4.-----------------------------------------------

  1. Электрические цепи с последовательным и параллельным соединением

проводников.

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

     

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

5.----------------------------------------------

  1. Аккумуляторы. Соединение источников электрической энергии в батарею.

Электри́ческий аккумуля́тор — химический источник тока многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования.

Последовательное соединение (а) — соединение, при котором минусовой вывод одного аккумулятора соединяют с плюсовым выводом другого аккумулятора и т. д. Среднее рабочее напряжение одного аккумулятора равно 2 В. Напряжение всех последовательно включенных аккумуляторов действует в одном направлении, и общее напряжение аккумуляторной батареи будет равно сумме напряжений всех аккумуляторов.

Схемы соединения источников и потребителей энергии

а  последовательное соединение трех аккумуляторов;  б  параллельное соединение трех аккумуляторов;  в  последовательное соединение двух потребителей;  г  параллельное соединение двух потребителей.

При параллельном соединении (б) минусовые выводы всех аккумуляторов соединяют в один общий вывод, а плюсовые — в другой. В этом случае напряжение батареи будет равным напряжению одного аккумулятора, но от такой аккумуляторной батареи можно получить большую силу тока.

6.--------------------------------------------------

  1. Работа и мощность электрического тока. Тепловое действие электрического тока.

Закон Джоуля-Ленца.

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы: I = q/t ..... и ..... U = A/q  можно вывести формулу для расчета работы электрического тока:   Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ: [ A ] = 1 Дж = 1A. B . c

Мощность электрического тока показывает работу тока, совершенную в единицу времени и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N, в электротехнике — буквой Р) так как А = IUt, то мощность электрического тока равна:

или 

Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А . B

Тепловое действие электрического тока.

Тепловое действие электрического тока впервые наблюдалось в 1801, когда током удалось расплавить различные металлы. Первое промышленное применение этого явления относится к 1808, когда был предложен электрозапал для пороха. Первая угольная дуга, предназначенная для обогрева и освещения, была выставлена в Париже в 1802. К полюсам вольтова столба, насчитывавшего 120 элементов, подсоединялись электроды из древесного угля, и когда оба угольных электрода приводились в соприкосновение, а затем разводились, возникал «сверкающий разряд исключительной яркости».

Исследуя тепловое действие электрического тока, Дж.Джоуль (1818–1889) провел эксперимент, который подвел прочную основу под закон сохранения энергии. Джоуль впервые показал, что химическая энергия, которая расходуется на поддержание в проводнике тока, приблизительно равна тому количеству тепла, которое выделяется в проводнике при прохождении тока. Он установил также, что выделяющееся в проводнике тепло пропорционально квадрату силы тока. Это наблюдение согласуется как с законом Ома (V = IR), так и с определением разности потенциалов (VW/q). В случае постоянного тока за время t через проводник проходит заряд q = It. Следовательно, электрическая энергия, превратившаяся в проводнике в тепло, равна:

Эта энергия называется джоулевым теплом и выражается в джоулях (Дж), если ток I выражен в амперах, R – в омах, а t – в секундах.

Закон Джоуля  Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцом[1].

В словесной формулировке звучит следующим образом[2]

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:

где   — мощность выделения тепла в единице объёма,   — плотность электрического тока,   — напряжённость электрического поляσ — проводимость среды.

7.--------------------------------------------

  1. Электрический ток в электролитах. Электролитическая диссоциация. Электролиз.

  2. Закон электролиза. Вещества, растворы которых проводят электрический ток, называются электролитами. Вода и кристаллы хлорида меди практически не проводят электрический ток. Раствор хлорида меди в воде является хорошим проводником. При прохождении электрического тока через водный раствор хлорида меди у положительного электрода, называемого анодом, выделяется газообразный хлор. На отрицательном электроде, называемом катодом, выделяется медь.    Изменение химического состава раствора или расплава при прохождении через него электрического тока, обусловленное потерей или присоединением электронов ионами, называется электролизом.    Фарадей установил, что при прохождении электрического тока через электролит масса mвещества, выделившегося на электроде, пропорциональна заряду  , прошедшему через электролит:

  3. , (47.1)

  4. или

  5.  , (47.2)

  6. где I — сила тока;  — время пропускания тока через электролит.    Выражения (47.1) или (47.2) называются законом электролиза. Коэффициент пропорциональности k в этих выражениях называется электрохимическим эквивалентом вещества.

  7.    Механизм электролиза. Особенностью молекул электролитов является перераспределение электрических зарядов, в результате которого одна часть молекулы вещества электролита оказывается заряженной положительно, другая — отрицательно. Разноименно заряженные части молекулы связываются кулоновскими силами притяжения.    При растворении электролита в жидкости, например хлорида натрия в воде, взаимодействие молекул жидкости с молекулами электролита ослабляет связь между частями молекул электролита и некоторые из них разделяются на положительный и отрицательный ион. Разделение молекул электролита на ионы происходит за счет энергии теплового движения молекул. В электрическом поле ионы электролита приходят в движение: положительные ионы движутся к катоду, отрицательные — к аноду. Так возникает электрический ток в электролите. При встрече положительного и отрицательного ионов происходит их соединение — рекомбинация. Сила взаимодействия ионов в воде уменьшается в 81 раз ( диэлектрическая проницаемость воды  ), и это затрудняет процесс рекомбинации ионов. При повышении температуры электролита возрастает средняя кинетическая энергия теплового движения молекул, увеличивается и число пар ионов, образующихся в единицу времени.    Из-за увеличения концентрации ионов при повышении температуры значение электрического сопротивления электролита с повышением температуры уменьшается.    Примером твердого электролита может служить стекло, в котором имеются ионы натрия. При низких температурах перемещение ионов в стекле затруднено и стекло является хорошим изолятором. При нагревании стекла до 300—400 °С ионы получают возможность перемещаться под действием электрического поля и стекло становится проводником электрического тока.    Электрический ток в любых электролитах создается движением положительных и отрицательных ионов, т. е. заряженных атомов или молекул вещества.

  8.   Применение электролиза. Явление электролиза широко применяется в современном промышленном производстве. С помощью электролиза из солей и оксидов получают многие металлы, например медь, никель, алюминий. Электролитический способ дает возможность получать вещества с малым количеством примесей. Поэтому его применяют для получения многих веществ, когда требуется высокая степень химической чистоты.    Путем электролиза можно наносить тонкие слои металлов, например хрома, никеля, серебра, золота, на поверхность изделий из других металлов. Эти слои могут служить защитой изделия от окисления, повышать его прочность или просто украшать изделие. Электролитический способ покрытия изделий тонким слоем металла называетсягальваностегией.    При более длительном пропускании тока через электролит можно получить на изделии такой толстый слой металла, который может быть отделен от него с сохранением формы. Электролитическое получение точных копий различных изделий называетсягальванопластикой. С помощью гальванопластики получают копии изделий сложной формы, копии скульптур и других произведений искусства.    Явление электролиза лежит в основе принципа действия кислотных и щелочных аккумуляторов, где используется важное свойство процесса электролиза — его обратимость.

Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:

Константа диссоциации   определяется активностями катионов анионов   и недиссоциированных молекул  следующим образом:

Значение   зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α) может быть рассчитана при любой концентрации электролита с помощью соотношения:

,

где   — средний коэффициент активности электролита.

Электро́лиз — физико-химический процесс, состоящий в выделении наэлектродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный[1]. Положительные ионы — катионы — (ионы металловводородные ионыионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного полученияалюминияводорода, а также гидроксида натрияхлора, хлорорганических соединений[источник не указан 1122 дня], диоксида марганца[2]пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракцияэлектрорафинирование).

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

8.------------------------------------------------

  1. Законы электролиза. Применение электролиза.