Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5Преобразования координат Г.doc
Скачиваний:
7
Добавлен:
27.09.2019
Размер:
1.17 Mб
Скачать

Физический смысл

Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:

 — есть результирующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы  . Учитывая, что  , Получим:

Если система замкнута, то есть  , то  , а величина

остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где:  — масса тела  — скорость центра масс тела  — момент инерции тела  — угловая скорость тела.

19. Постулаты Эйнштейна. Преобразования Лоренца. Инварианты преобразований.

1   постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.

2  постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.

Преобразова́ния Ло́ренца — линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющее длины или, что эквивалентно, скалярное произведение векторов.

Преобразования Лоренца псевдоевклидова пространства сигнатуры (n-1,1) находят широкое применение в физике, в частности, в специальной теории относительности (СТО), где в качестве аффинного псевдоевклидова пространствавыступает четырёхмерный пространственно-временной континуум (пространство Минковского).

Преобразование Лоренца (лоренцево преобразование) псевдоевклидова векторного пространства   — это линейное преобразование  , сохраняющее индефинитное скалярное произведение векторов. Это означает, что для любых двух векторов   выполняется равенство

где треугольными скобками обозначено индефинитное скалярное произведение   в псевдоевклидовом пространстве  .

Аналогично, преобразование Лоренца (лоренцево преобразование) псевдоевклидова аффинного пространства — это аффинное преобразование, сохраняющее расстояние между точками этого пространства

Лоренцевы преобразования псевдоевклидовой плоскости можно записать в наиболее простом виде, используя базис  , состоящий из двух изотропных векторов:

Именно, в зависимости от знака определителя  , матрица преобразования в данном базисе имеет вид:

Знак числа   определяет то, оставляет ли преобразование   части светового конуса на месте  , или меняет их местами  .

Другой часто встречающийся вид матриц лоренцевых преобразований псевдоевклидовой плоскости получается при выборе базиса, состоящего из векторов   и  :

В базисе   матрица преобразования   имеет одну из четырёх форм:

где   и   — гиперболические синус и косинус.

20. Элементы релятивистской динамики: масса, импульс и энергия.

Чрезвычайно важный вывод релятивистской механики заключается в том, что находящаяся в покое масса m содержит огромный запас энергии. Это утверждение имеет разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на Δm, то при этом должна выделиться энергия ΔE = Δm · c2. Многочисленные прямые эксперименты дают убедительные доказательства существования энергии покоя. Первое экспериментальное подтверждение правильности соотношения Эйнштейна, связывающего массу и энергию, было получено при сравнении энергии, высвобождающейся при радиоактивном распаде, с разностью масс исходного ядра и конечных продуктов. Например, при бета-распаде свободного нейтрона появляется протонэлектрон и еще одна частица с нулевой массой – антинейтрино

При этом суммарная кинетическая энергия конечных продуктов равна 1,25·10–13 Дж. Масса нейтрона превышает суммарную массу протона и электрона на Δm = 13,9·10–31 кг. Такому уменьшению массы должна соответствовать энергия ΔE = Δm · c2 = 1,25·10–13 Дж, равная наблюдаемой кинетической энергией продуктов распада.

Чтобы возникло ощущение масштабов этого явления в макромире, рассмотрим такой пример. При взрыве 1 т тринитротолуола высвобождается энергия 4,2·109 Дж. При взрыве мегатонной бомбы выделится энергия4,2·1015 Дж. Соответствующая этой громадной энергии масса m = E / c2 оказывается равной всего 46 г. Таким образом, при взрыве ядерной мегатонной бомбы масса ядерной «взрывчатки» должна уменьшится примерно на50 г. Полная первоначальная масса водородной бомбы, эквивалентной по мощности 1 мегатонне тринитротолуола, примерно в 1000 раз больше и составляет около 50 кг.

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами. Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи. Формула Эйнштейна 

E0 = mc2

Принцип относительности Эйнштейна утверждает инвариантность всех законов природы по отношению к переходу от одной инерциальной системе отсчета к другой. Это значит, что все уравнения, описывающие законы природы, должны быть инвариантны относительно преобразований Лоренца. К моменту создания СТО теория, удовлетворяющая этому условию, уже существовала – это электродинамика Максвелла. Однако уравнения классической механики Ньютона оказались неинвариантными относительно преобразований Лоренца, и поэтому СТО потребовала пересмотра и уточнения законов механики.

В основу такого пересмотра Эйнштейн положил требования выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Для того, чтобы закон сохранения импульса выполнялся во всех инерциальных системах отсчета, оказалось необходимым изменить определение импульса тела. Вместо классического импульса   в СТО релятивистский импульс   тела с массой m, движущегося со скоростью  записывается в виде 

(*)

Если принять такое определение, то закон сохранения суммарного импульса взаимодействующих частиц (например, при соударениях) будет выполняться во всех инерциальных системах, связанных преобразованиями Лоренца. При β → 0 релятивистский импульс переходит в классический. Масса m, входящая в выражение для импульса, есть фундаментальная характеристика частицы, не зависящая от выбора инерциальной системы отсчета, а, следовательно, и от скорости ее движения. (Во многих учебниках прошлых лет ее было принято обозначать буквой m0 и называть массой покоя. Кроме того, вводилась так называемая релятивистская масса, равная   зависящая от скорости движения тела. Современная физика постепенно отказывается от этой терминологии).

Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона: 

но только в СТО под   понимается релятивистский импульс частицы. Следовательно, 

Так как релятивистский импульс не пропорционален скорости частицы, скорость его изменения не будет прямо пропорциональна ускорению. Поэтому постоянная по модулю и направлению сила не вызывает равноускоренного движения. Например, в случае одномерного движения вдоль оси x ускорение частицы   под действием постоянной силы оказывается равным 

21. Общие свойства жидкостей и газов. Давление. Закон Паскаля, закон Архимеда. Равновесие, погруженных в жидкость, тел. Идеальная жидкость.

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

  • Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

  • Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Сферическая форма капли жидкости как пример минимизации площади поверхности, что обусловленоповерхностным натяжением в жидкостях.

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация

Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

  • Кипение

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

  • Смачивание

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

  • Диффузия

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Волны на поверхности воды

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Газ (газообразное состояние) (от нидерл. gas) — агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекуламиатомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром.

Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма[1] и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда).

Газообразное состояние — самое распространённое состояние вещества Вселенной (межзвёздное веществотуманностизвёздыатмосферы планет и т. д.). По химическим свойствам газы и их смеси весьма разнообразны — от малоактивных инертных газов до взрывчатых газовых смесей. К газам иногда[уточнить] относят не только системы из атомов и молекул, но и системы из других частиц — фотоновэлектроновброуновских частиц, а также плазму .

Сжимаемость

Сжимаемость z — это отношение удельного объёма газа к удельному объёму идеального газа с такой же молярной массой. Как правило, это число чуть меньше единицы, при этом наиболее значительно отклоняется от неё в близилинии насыщения и для достаточно сложных органических газов, например, для метана при стандартных условиях  [2].

[править]Теплоёмкость

Теплоёмкость газа сильно зависит от характера процесса, который с ним протекает. Наиболее часто используются изохорная теплоёмкость   и изобарная  ; для идеального газа  .

[править]Теплопроводность

[править]Вязкость

В отличие от жидкостейкинематическая вязкость газов с ростом температуры растёт, хотя для динамической вязкости зависимость менее выражена. Также вязкость обратно пропорциональна давлению.

[править]Число Прандтля

Число Прандтля (отношение кинематической вязкости к температуропроводности  для газов обычно немного меньше единицы.

[править]Проводимость

Газы — очень плохие проводники, но в ионизированном состоянии газ способен проводить электрический ток[3]Проводимость газа зависит от напряжения нелинейно, поскольку степень ионизации изменяется по сложному закону. Основных способов ионизации газа два: термическая ионизация и ионизация электрическим ударом. Кроме того, существует так называемый самостоятельный электрический разряд (пример — молния).

Давле́ние   — физическая величина, равная силе F, действующей на единицу площади поверхности S перпендикулярно этой поверхности. В данной точке давление определяется как отношение нормальной составляющей силы  , действующей на малый элемент поверхности, к его площади:

Закон Паскаля формулируется так:

Давление, производимое на покоящуюся жидкость или газ, передается в любую точку жидкости или газа одинаково по всем направлениям.

Закон назван в честь французского учёного Блеза Паскаля.

На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, прессы и др.

Данный закон является прямым следствием отсутствия сил трения покоя в жидкостях и газах.

Закон Паскаля неприменим в случае движущейся жидкости (газа) — в этом случае необходимо пользоваться уравнениями гидродинамики, а также в случае, когда жидкость (газ) находится вгравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой.

Закон Архимеда формулируется следующим образом[1]: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа)(называемая силой Архимеда)

где   — плотность жидкости (газа),   — ускорение свободного падения, а   — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и BS — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.

В теоретической физике также применяют закон Архимеда в интегральной форме:

,

где   — площадь поверхности,   — давление в произвольной точке, интегрирование производится по всей поверхности тела.

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами.

Идеа́льная жи́дкость — в гидродинамике — воображаемая (идеализированная) жидкость, в которой, в отличие от реальной жидкости, отсутствует вязкость . В идеальной жидкости отсутствуетвнутреннее трение, то есть нет касательных напряжений между двумя соседними слоями.

22.Уравнение неразрывности струи. Уравнение Бернулли. Течение вязкой жидкости.

Рассмотрим стационарный (скорость в данной точке не изменяется со временем) поток идеальной (нет внутреннего трения) несжимаемой жидкости.  В этом случае выполняется закон сохранения массы.

Пусть за время t через сечение трубы S1 проходит жидкость массой m1 (рис. 2.3):    Тогда через сечение S2 за тоже время проходит жидкость массой m2   Так как m1=m2, то   или    Где сечение трубы меньше, там скорость жидкости больше, и наоборот (если S1 > S2, то v1 < v2).

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

 — плотность жидкости,

 — скорость потока,

 — высота, на которой находится рассматриваемый элемент жидкости,

 — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,

 — ускорение свободного падения.