
- •Электрический заряд. Электрическое поле. Основные характеристики электростатического поля – напряженность и потенциал. Графическое представление электростатических полей.
- •Напряженность и потенциал электростатического поля. Расчет полей методом суперпозиции (заряженный стержень, кольцо).
- •Потенциальность электростатического поля. Интегральная и дифференциальная связь напряженности и потенциала.
- •Теорема Остроградского-Гаусса для электростатического поля в вакууме (без вывода) и применение теоремы к расчету поля заряженной плоскости и сферы.
- •Электростатическое поле в диэлектриках. Диполи. Поведение диполя в однородном и неоднородном электростатическом поле. Поляризованность (вектор поляризации).
- •Теорема Остроградского-Гаусса для электростатического поля в диэлектрике (вывод). Вектор электрического смещения, диэлектрическая проницаемость и диэлектрическая восприимчивость.
- •Поведение двух векторов e & d на границе двух диэлектриков.
- •Теорема Остроградского-Гаусса для электростатического поля в диэлектрике (без вывода). Свободные и связанные заряды. Расчет поля диэлектрика в виде цилиндра с равномерно распределенным зарядом.
- •Проводники в электростатическом поле. Емкость. Конденсаторы.
- •Емкость. Конденсаторы. Энергия электростатического поля.
- •Постоянный электрический ток. Вектор плотности тока. Классическая теория электропроводимости металлов. Закон Ома в дифференциальной форме.
- •Закон Ома в интегральной форме. Обобщенный закон Ома.
- •Магнитное поле. Вектор магнитной индукции, как силовая характеристика магнитного поля. Силовые линии магнитного поля.
- •Магнитное поле тока. Закон Био-Савара-Лапласа и его применение к расчету магнитной индукции на оси кругового витка с током методом суперпозиции.
- •Расчет магнитного поля прямолинейного проводника с током с помощью закона Био-Савара-Лапласа и принципа суперпозиции.
- •Закон полного тока для магнитного поля в вакууме. Сцепленный ток. Применение закона полного тока для расчета магнитного поля тороида.
- •Применение закона полного тока для расчета магнитного поля тока тороида и длинного соленоида. Вихревой характер магнитного поля.
- •Силовое действие магнитного поля на проводник с током и контур с током.
- •Движение заряженных частиц в магнитном поле. Сила Ампера и Лоренса.
- •Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника и контура с током в магнитном поле.
- •Явление электромагнитной индукции. Законы Фарадея-Максвелла. Правило Ленца. Вывод закона электромагнитной индукции на основе электронной теории.
- •Явление самоиндукции. Токи замыкания и размыкания. Взаимная индукция.
- •Энергия магнитного поля. Объемная плотность энергии.
- •Магнитное поле в веществе. Магнитные моменты атомов. Намагниченность. Макро- и микротоки.
- •Закон полного тока для магнитного поля в веществе. Напряженность магнитного поля. Поведение векторов в и н на границе магнетиков.
- •Типы магнетиков. Магнитная проницаемость. Элементарная теория диа- и парамагнетизма.
- •Ферромагнетики. Домены. Гистерезис. Точка Кюри.
- •Основы теории Максвелла для электромагнитного поля. Уравнения Максвелла в интегральной форме. Ток смещения.
- •Гармонические электромагнитные колебания и их характеристики. Электрический колебательный контур. Дифференциальное уравнение собственных гармонических колебаний и его решение.
- •Затухающие электромагнитные колебания. Дифференциальное уравнение и его решение. Логарифмический декремент.
- •Вынужденные электромагнитные колебания. Амплитуда и фаза вынужденных колебаний. Резонанс.
- •Сложение однонаправленных и взаимно перпендикулярных колебаний.
Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника и контура с током в магнитном поле.
Поток вектора магнитной индукции, пронизывающий площадку S - это величина, равная:
Поток вектора магнитной индукции (магнитный поток) измеряется в веберах [Вб].
Магнитный поток - величина скалярная.
Поток вектора магнитной индукции (магнитный поток) равен числу линий магнитной индукции, проходящих сквозь данную поверхность.
Магнитный поток сквозь произвольную замкнутую поверхность равен нулю:
Это теорема Остроградского-Гаусса для магнитного поля.
Она свидетельствует о том, что в природе не существует магнитных зарядов – физических объектов, на которых бы начинались или заканчивались линии магнитной индукции.
Рассмотрим контур с током, образованный
неподвижными проводами и скользящей
по ним подвижной перемычкой длиной l.
Этот контур находится во внешнем
однородном магнитном поле
,
перпендикулярном к плоскости контура.
При показанном на рисунке направлении
тока I, вектор
сонаправлен
с
.
На элемент тока I (подвижный провод)
длиной l действует сила Ампера,
направленная вправо:
Пусть проводник l переместится
параллельно самому себе на расстояние
dx. При этом совершится работа:
Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.
Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.
Выведем выражение для работы по перемещению замкнутого контура с током в магнитном поле.
Рассмотрим прямоугольный контур с током
1-2-3-4-1. Магнитное поле направлено от нас
перпендикулярно плоскости контура.
Магнитный поток
,
пронизывающий контур, направлен по
нормали
к
контуру, поэтому
.
Переместим этот контур параллельно
самому себе в новое положение
1'-2'-3'-4'-1'. Магнитное поле в общем случае
может быть неоднородным и новый
контур будет пронизан магнитным
потоком
.
Площадка 4-3-2'-1'-4, расположенная между
старым и новым контуром, пронизывается
потоком
.
Полная работа по перемещению контура
в магнитном поле равна алгебраической
сумме работ, совершаемых при перемещении
каждой из четырех сторон контура:
где
,
равны
нулю, т.к. эти стороны не пересекают
магнитного потока, при своём перемещение
(очерчивают нулевую площадку).
.
Провод 1–2 перерезает поток
,
но движется против сил действия магнитного
поля.
.
Тогда общая работа по перемещению
контура
или
здесь
–
это изменение магнитного потока,
сцепленного с контуром.
Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока, сцепленного с этим контуром.
Элементарную работу по бесконечно
малому перемещению контура в магнитном
поле можно найти по формуле
Это соотношение, выведенное нами для
простейшего случая, остаётся справедливым
для контура любой формы в произвольном
магнитном поле. Более того, если контур
неподвижен, а меняется
,
то при изменении магнитного потока в
контуре на величину dФ, магнитное поле
совершает ту же работу